如圖,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.動點M從B點出發(fā)沿線段BC以每秒2個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD以每秒1個單位長度的速度向終點D運動.設(shè)運動的時間為t秒.
【小題1】求BC的長
【小題2】當(dāng)MN∥AB時,求t的值
【小題3】試探究:t為何值時,△MNC為等腰三角形.

【小題1】如圖①,過A、D分別作AK⊥BC于K,DH⊥BC于H,則四邊形ADHK是矩形.
∴KH=AD=3.
在Rt△ABK中,AK=AB•sin45°=4=4BK=AB•cos45°=4=4.
在Rt△CDH中,由勾股定理得,HC==3.
∴BC=BK+KH+HC=4+3+3=10.(2分)
【小題2】如圖②,過D作DG∥AB交BC于G點,則四邊形ADGB是平行四邊形.
∵MN∥AB,
∴MN∥DG.
∴BG=AD=3.
∴GC=10﹣3=7.
由題意知,當(dāng)M、N運動到t秒時,CN=t,CM=10﹣2t.
∵DG∥MN,
∴∠NMC=∠DGC.
又∠C=∠C,
∴△MNC∽△GDC.
,

解得,.(3分)

【小題3】分三種情況討論:
①當(dāng)NC=MC時,如圖③,即t=10﹣2t,


②當(dāng)MN=NC時,如圖④,過N作NE⊥MC于E.
由等腰三角形三線合一性質(zhì)得
EC=MC=(10﹣2t)=5﹣t.
在Rt△CEN中,cosC==,
又在Rt△DHC中,cosC=,

解得t=
③當(dāng)MN=MC時,如圖⑤,過M作MF⊥CN于F點.FC=NC=t.
(方法同②),
解得
綜上所述,當(dāng)t=、t=或t=時,△MNC為等腰三角形.(3分)
解析:
(1)作梯形的兩條高,根據(jù)直角三角形的性質(zhì)和矩形的性質(zhì)求解;
(2)平移梯形的一腰,根據(jù)平行四邊形的性質(zhì)和相似三角形的性質(zhì)求解;
(3)因為三邊中,每兩條邊都有相等的可能,所以應(yīng)考慮三種情況.結(jié)合路程=速度×?xí)r間求得其中的有關(guān)的邊,運用等腰三角形的性質(zhì)和解直角三角形的知識求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案