【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng).過點(diǎn)PPDAC于點(diǎn)D(點(diǎn)P不與點(diǎn)A、B重合),作∠DPQ=60°,邊PQ交射線DC于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)用含t的代數(shù)式表示線段DC的長;

(2)當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),求t的值;

(3)設(shè)△PDQ與△ABC重疊部分圖形的面積為S,求St之間的函數(shù)關(guān)系式;

(4)當(dāng)線段PQ的垂直平分線經(jīng)過△ABC一邊中點(diǎn)時(shí),直接寫出t的值.

【答案】(1)CD= 2t(0<t<2);(2)1;(3)見解析;(4)t的值為秒或秒或秒.

【解析】

1)先求出AC,用三角函數(shù)求出AD,即可得出結(jié)論;

(2)利用AD+DQ=AC,即可得出結(jié)論;

(3)分兩種情況,利用三角形的面積公式和面積差即可得出結(jié)論;

(4)分三種情況,利用銳角三角函數(shù),即可得出結(jié)論.

1)在RtABC中,∠A=30°,AB=4,

AC=2,

PDAC,

∴∠ADP=CDP=90°,

RtADP中,AP=2t,

DP=t,AD=APcosA=2t×=t,

CD=AC﹣AD=2t(0<t<2);

(2)在RtPDQ中,∵∠DPC=60°,

∴∠PQD=30°=A,

PA=PQ,

PDAC,

AD=DQ,

∵點(diǎn)Q和點(diǎn)C重合,

AD+DQ=AC,

t=2

t=1;

(3)當(dāng)0<t≤1時(shí),S=SPDQ=DQ×DP=×t×t=t2,

當(dāng)1<t<2時(shí),如圖2,

CQ=AQ﹣AC=2AD﹣AC=2t﹣2=2(t﹣1),

RtCEQ中,∠CQE=30°,

CE=CQtanCQE=2(t﹣1)×=2(t﹣1),

S=SPDQ﹣SECQ=×t×t﹣×2(t﹣1)×2(t﹣1)=﹣t2+4t﹣2,

S=

(4)當(dāng)PQ的垂直平分線過AB的中點(diǎn)F時(shí),如圖3,

∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,

∵∠A=AQP=30°,

∴∠FPG=60°,

∴∠PFG=30°,

PF=2PG=2t,

AP+PF=2t+2t=2,

t=;

當(dāng)PQ的垂直平分線過AC的中點(diǎn)M時(shí),如圖4,

∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,

RtNMQ中,NQ=,

AN+NQ=AQ,

+=2t,

t=,

當(dāng)PQ的垂直平分線過BC的中點(diǎn)時(shí),如圖5,

BF=BC=1,PE=PQ=t,H=30°,

∵∠ABC=60°,

∴∠BFH=30°=H,

BH=BF=1,

RtPEH中,PH=2PE=2t,

AH=AP+PH=AB+BH,

2t+2t=5,

t=

即:當(dāng)線段PQ的垂直平分線經(jīng)過ABC一邊中點(diǎn)時(shí),t的值為秒或秒或秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC和∠ACB的角平分線相交于點(diǎn)O,DE經(jīng)過O點(diǎn),且DE//BC

⑴請指出圖中的兩個(gè)等腰三角形.

⑵請選擇⑴中的一個(gè)三角形,說明它是等腰三角形的理由.

⑶如果△ABC的周長是26,△ADE的周長是18,請求出BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實(shí)效性,軍寧中學(xué)開展以我最喜愛的傳統(tǒng)文化種類為主題的調(diào)查活動(dòng),圍繞在詩詞、國畫、對聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若軍寧中學(xué)共有960名學(xué)生,請你估計(jì)該中學(xué)最喜愛國畫的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAD,將平行四邊形ABCD沿著EF對折.設(shè)∠1的度數(shù)為,則∠C=______.(用含有n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩家超市同時(shí)采取通過搖獎(jiǎng)返現(xiàn)金搞促銷活動(dòng),凡在超市購物滿100元的顧客均可以參加搖獎(jiǎng)一次.小明和小華對兩家超市搖獎(jiǎng)的50名顧客獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì)并制成了圖表(如圖)

獎(jiǎng)金金額

獲獎(jiǎng)人數(shù)

20

15

10

5

商家甲超市

5

10

15

20

乙超市

2

3

20

25

(1)在甲超市搖獎(jiǎng)的顧客獲得獎(jiǎng)金金額的中位數(shù)是   ,在乙超市搖獎(jiǎng)的顧客獲得獎(jiǎng)金金額的眾數(shù)是   ;

(2)請你補(bǔ)全統(tǒng)計(jì)圖1;

(3)請你分別求出在甲、乙兩超市參加搖獎(jiǎng)的50名顧客平均獲獎(jiǎng)多少元?

(4)圖2是甲超市的搖獎(jiǎng)轉(zhuǎn)盤,黃區(qū)20元、紅區(qū)15元、藍(lán)區(qū)10元、白區(qū)5元,如果你購物消費(fèi)了100元后,參加一次搖獎(jiǎng),那么你獲得獎(jiǎng)金10元的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實(shí)效性,軍寧中學(xué)開展以我最喜愛的傳統(tǒng)文化種類為主題的調(diào)查活動(dòng),圍繞在詩詞、國畫、對聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若軍寧中學(xué)共有960名學(xué)生,請你估計(jì)該中學(xué)最喜愛國畫的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東從A地出發(fā)以某一速度向B地走去,同時(shí)小明從B地出發(fā)以另一速度向A地走去,y1,y2分別表示小東、小明離B地的距離y(km)與所用時(shí)間x(h)的關(guān)系,如圖所示,根據(jù)圖象提供的信息,回答下列問題:

(1)試用文字說明交點(diǎn)P所表示的實(shí)際意義;

(2)y1x的函數(shù)關(guān)系式;

(3)A,B兩地之間的距離及小明到達(dá)A地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線分別交AB,CD于點(diǎn)E,F(xiàn),連接AF,CE,如果∠BCE=26°,則∠CAF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1,在中,,點(diǎn)的中點(diǎn),點(diǎn)邊上一點(diǎn),直線垂直于直線于點(diǎn),交于點(diǎn).

1)求證:.

2)如圖2,直線垂直于直線,垂足為點(diǎn),交的延長線于點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊答案