用因式分解法解方程:(x-4)2-(5-2x)2=0.
考點(diǎn):解一元二次方程-因式分解法
專題:計(jì)算題
分析:方程左邊利用平方差公式分解后,利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)求解.
解答:解:分解因式得:(x-4+5-2x)(x-4-5+2x)=0,
可得1-x=0或3x-9=0,
解得:x1=1,x2=3.
點(diǎn)評(píng):此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程①(x-2)2=5;②x2-3x-2=0;③(2-3x)+3(3x-2)2=0較簡(jiǎn)便的方法是 ( 。
A、①用直接開平方法②用因式分解法③配方法
B、①用因式分解法②公式法③用直接開平方法用
C、①公式法②用直接開平方法③因式分解法
D、①直接開平方法②公式法③因式分解法

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,D為邊BC上一點(diǎn),已知
BD
DC
=
5
3
,E為AD的中點(diǎn),延長(zhǎng)BE交AC于F,求
BE
EF
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知an=2,b2n=3,求(a3b42n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=(m-1)x2-m2x+
3m
2
的對(duì)稱軸為x=2,
(1)求m的值;
(2)判斷拋物線的開口方向,拋物線是否與x軸相交?如相交,求交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一場(chǎng)足球比賽中,某球員在離球門6m遠(yuǎn)的地方抬腳勁射,從高速攝影機(jī)拍得的資料,足球沿拋物線飛向球門,并且在如圖的直角坐標(biāo)系中,該拋物線對(duì)應(yīng)的二次函數(shù)為y=a(x-4)2+3.2,若球門的橫梁高為2.44m,此球有進(jìn)門的可能嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先閱讀下面的材料,然后解答后面的問(wèn)題:
如圖1,在△ABC中,AB=AC,BD⊥AC于點(diǎn)D,點(diǎn)P底邊BC上任意的一點(diǎn),PE⊥AB于點(diǎn)E,PF⊥AC于F,求證:PE+PF=BD;
證明:連接AP,則S△ABC=S△ABP+S△ACP,
于是
1
2
•AC•BD=
1
2
•AB•PE+
1
2
•AC•PF

由于AB=AC,
則BD=PE+PF
問(wèn)題:
(1)試用文字?jǐn)⑹錾厦娴慕Y(jié)論:
 

(2)用上面的結(jié)論求解:
如圖2,把一張長(zhǎng)方形紙片沿對(duì)角線折疊,重合部分是△FBD,AB=2,點(diǎn)P是對(duì)角線BD上任意一點(diǎn),PM⊥AD于點(diǎn)M,PN⊥BE于點(diǎn)N,求PM+PN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的邊長(zhǎng)為1,以頂點(diǎn)A為圓心,作一個(gè)半徑為1的圓.分別指出正方形ABCD的頂點(diǎn)A、B、C、D與⊙A的位置關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是⊙O的直徑,CD與⊙O切于點(diǎn)C,OD⊥AB,已知tanA=
1
3
,則sinD的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案