【題目】如圖,已知:在直角梯形ABCD中,ADBC,C=90°,AB=AD=25,BC=32,連接BD,AEBD,垂足為E.

(1)求證:ABE∽△DBC;

(2)求線段AE的長(zhǎng).

【答案】1)證明見(jiàn)解析;(215.

【解析】試題分析:(1)由等腰三角形的性質(zhì)可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可證△ABE∽△DBC;

2)由等腰三角形的性質(zhì)可知,BD=2BE,根據(jù)△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE

1)證明:∵AB=AD=25,

∴∠ABD=∠ADB

∵AD∥BC,

∴∠ADB=∠DBC

∴∠ABD=∠DBC,

∵AE⊥BD

∴∠AEB=∠C=90°,

∴△ABE∽△DBC;

2)解:∵AB=AD,又AE⊥BD,

∴BE=DE,

∴BD=2BE,

△ABE∽△DBC,

∵AB=AD=25,BC=32

,

∴BE=20

∴AE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:等腰△ABC的底邊BC長(zhǎng)為6,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于EF點(diǎn).若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△CDM周長(zhǎng)的最小值為( 。

A. 6 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2+bx+c的對(duì)稱軸為x=2,且過(guò)點(diǎn)C(0,3)

(1)求此拋物線的解析式;

(2)證明:該拋物線恒在直線y=﹣2x+1上方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是優(yōu)弧BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、D重合).

(1)當(dāng)圓心O在∠BAD內(nèi)部,∠ABO+ADO=50°時(shí),∠A =   °;

(2)當(dāng)圓心O在∠BAD內(nèi)部,四邊形OBCD為平行四邊形時(shí),求∠C的度數(shù);

(3)當(dāng)圓心O在∠BAD外部,四邊形OBCD為平行四邊形時(shí),請(qǐng)直接寫(xiě)出∠ABO與∠ADO的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果兩個(gè)三角形兩邊和第三邊上的中線對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似.________(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB兩端點(diǎn)坐標(biāo)分別為A(﹣1,5)、B(3,3),線段CD兩端點(diǎn)坐標(biāo)分別為C(5,3)、D (3,﹣1)數(shù)學(xué)課外興趣小組研究這兩線段發(fā)現(xiàn):其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可得到另一條線段,請(qǐng)寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小軍的爸爸和小慧的爸爸都是出租車司機(jī),他們?cè)诿刻斓陌滋、夜間都要到同一加油站各加一次油.白天和夜間的油價(jià)不同,有時(shí)白天高,有時(shí)夜間高,但不管價(jià)格如何變化,他們兩人采用固定的加油方式:小軍的爸爸不論是白天還是夜間每次總是加油,小慧的爸爸則不論是白天還是夜間每次總是花元錢(qián)加油.假設(shè)某天白天油的價(jià)格為每升元,夜間油的價(jià)格為每升元.

問(wèn):(1)小軍的爸爸和小慧的爸爸在這天加油的平均單價(jià)各是多少?

2)誰(shuí)的加油方式更合算?請(qǐng)你通過(guò)數(shù)學(xué)運(yùn)算,給以解釋說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

商店經(jīng)營(yíng)有A、B兩種品牌的筆,A種筆的單價(jià)比B種筆的單價(jià)貴2元,若花140買(mǎi)A種筆,120元買(mǎi)B種筆,則A種筆反而比B種筆少一支.

1)求AB兩種品牌的筆每支各多少元.

2)某單位準(zhǔn)備一次性購(gòu)買(mǎi)兩種筆共200支,預(yù)計(jì)費(fèi)用不超過(guò)1800元.并且規(guī)定,A種筆的數(shù)量不能少于B種筆的.問(wèn)如何購(gòu)買(mǎi),單位花錢(qián)最少?最少花多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為邊長(zhǎng)不變的等腰直角三角形,,在外取一點(diǎn),以為直角頂點(diǎn)作等腰直角,其中內(nèi)部,,,當(dāng)E、PD三點(diǎn)共線時(shí),

下列結(jié)論:

EP、D共線時(shí),點(diǎn)到直線的距離為;

E、P、D共線時(shí),

;

④作點(diǎn)關(guān)于的對(duì)稱點(diǎn),在繞點(diǎn)旋轉(zhuǎn)的過(guò)程中,的最小值為;

繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)落在上,當(dāng)點(diǎn)落在上時(shí),取上一點(diǎn),使得,連接,則

其中正確結(jié)論的序號(hào)是___

查看答案和解析>>

同步練習(xí)冊(cè)答案