在平面直角坐標(biāo)系xOy內(nèi),拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.把直線y=-x-3沿y軸翻折后恰好經(jīng)過(guò)B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在坐標(biāo)軸上是否存在這樣的點(diǎn)F,使得∠DFB=∠DCB?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)如圖,依題意,把直線y=-x-3沿y軸翻折后經(jīng)過(guò)B、C兩點(diǎn),

∴點(diǎn)B坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,-3),
∴c=-3.
∴-9+3b-3=0.
解得b=4.
∴拋物線的解析式為y=-x2+4x-3.

(2)在坐標(biāo)軸上存在這樣的點(diǎn)F,使得∠DFB=∠DCB.
拋物線y=-x2+4x-3的頂點(diǎn)D的坐標(biāo)為(2,1).
設(shè)對(duì)稱軸與x軸的交點(diǎn)為點(diǎn)E,
在Rt△DEB中,DE=BE=1,
∴∠DBE=45°.
在Rt△OBC中,OB=OC=3,
∴∠OBC=45°.
∴∠DBC=90°.
在Rt△DBC中,DB=
2
,BC=3
2

tan∠DCB=
DB
BC
=
1
3

∵DE⊥x軸,DE=1,
∴在x軸上存在EF1=3,EF2=3.
∴符合題意的點(diǎn)的坐標(biāo)為F1(-1,0)或F2(5,0)
過(guò)點(diǎn)D作DF3⊥y軸于F3,
∴點(diǎn)F3的坐標(biāo)為(0,1).
∵在Rt△F3BO中,tan∠F3BO=
OF3
OB
=
1
3

又∵DF3x軸,
∴∠DF3B=∠F3BO.
∴點(diǎn)F3(0,1)也是符合題意的點(diǎn)
綜上,符合題意的點(diǎn)F的坐標(biāo)為(-1,0)、F2(5,0)或(0,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+c(a≠0)與直線y=kx+b(k≠0)相交于A(2,1)、B(1,-1)兩點(diǎn),你能求出拋物線和直線的函數(shù)表達(dá)式嗎?畫出草圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)M在第一象限,拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交與點(diǎn)C,O為坐標(biāo)原點(diǎn),如果△ABM是直角三角形,AB=2,OM=
5

(1)求點(diǎn)M的坐標(biāo);
(2)求拋物線y=ax2+bx+c的解析式;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PAC為直角三角形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,開(kāi)口向上的拋物線與x軸交于A、B兩點(diǎn),D為拋物線的頂點(diǎn),O為坐標(biāo)原點(diǎn).若OA、OB(OA<OB)的長(zhǎng)分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)過(guò)點(diǎn)A作AC⊥AD交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)A任作直線l交線段CD于點(diǎn)P,若點(diǎn)C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線y=-
3
x+
3
與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,C是x軸上一點(diǎn),如果∠ABC=∠ACB,
求:(1)點(diǎn)C的坐標(biāo);
(2)圖象經(jīng)過(guò)A、B、C三點(diǎn)的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè).他準(zhǔn)備用40m長(zhǎng)的木欄圍一個(gè)矩形的羊圈,為了節(jié)約材料同時(shí)要使矩形的面積最大,他利用了自家房屋一面長(zhǎng)25m的墻,設(shè)計(jì)了如圖一個(gè)矩形的羊圈.
(1)請(qǐng)你求出張大伯矩形羊圈的面積;
(2)請(qǐng)你判斷他的設(shè)計(jì)方案是否合理?如果合理,直接答合理;如果不合理又該如何設(shè)計(jì)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一個(gè)運(yùn)動(dòng)員投擲鉛球的拋物線圖,解析式為y=-
1
12
x2+
2
3
x+
5
3
(單位:米),其中A點(diǎn)為出手點(diǎn),C點(diǎn)為鉛球運(yùn)行中的最高點(diǎn),B點(diǎn)鉛球落地點(diǎn).求:
(1)出手點(diǎn)A離地面的高度;
(2)最高點(diǎn)C離地面的高度;
(3)該運(yùn)動(dòng)員的成績(jī)是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

美廉客超市以30元/千克的價(jià)格購(gòu)進(jìn)一批新疆和田玉棗,如果以35元/千克的價(jià)格銷售,那么每天可售出300千克;如果以40元/千克的價(jià)格銷售,那么每天可售出200千克,根據(jù)銷售經(jīng)驗(yàn)可以知道,每天的銷售量y(千克)與銷售單價(jià)x(元)(x≥30)存在一次函數(shù)關(guān)系.
(1)請(qǐng)你求出y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該超市銷售新疆和田玉棗每天獲得的利潤(rùn)為w元,求當(dāng)銷售單價(jià)為多少時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)如果物價(jià)局規(guī)定商品的利潤(rùn)率不能高于40%,而超市希望每天銷售新疆和田玉棗的利潤(rùn)不低于1500元,請(qǐng)你幫助超市確定這種棗的銷售單價(jià)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-2ax+3的圖象與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+b,又tan∠OBC=1.
(1)求二次函數(shù)的解析式和直線DC的函數(shù)關(guān)系式;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案