8.(1)$\left\{\begin{array}{l}{3x=1-2y}\\{5x-4y=31}\end{array}\right.$          (2)$\left\{\begin{array}{l}{4(x-y-1)=3(1-y)-2}\\{\frac{x}{2}+\frac{y}{3}=2}\end{array}\right.$.

分析 (1)利用代入消元法解出方程組即可;
(2)利用加減消元法解出方程組.

解答 解:(1)$\left\{\begin{array}{l}{3x=1-2y①}\\{5x-4y=31②}\end{array}\right.$,
由①得,2y=1-3x③,
把③代入②得,5x-2(1-3x)=31,
解得,x=3,
把x=3代入③得,y=-4,
則方程組的解為:$\left\{\begin{array}{l}{x=3}\\{y=-4}\end{array}\right.$;
(2)整理得,$\left\{\begin{array}{l}{4x-y=5①}\\{3x+2y=12②}\end{array}\right.$,
①×2+②得,11x=22,
解得,x=2,
把x=2代入①得,y=3,
則方程組的解為:$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$.

點評 本題考查的是二元一次方程組的解法,代入法解二元一次方程組的一般步驟:①從方程組中選一個系數(shù)比較簡單的方程,將這個方程組中的一個未知數(shù)用含另一個未知數(shù)的代數(shù)式表示出來.②將變形后的關(guān)系式代入另一個方程,消去一個未知數(shù),得到一個一元一次方程.③解這個一元一次方程,求出x(或y)的值.④將求得的未知數(shù)的值代入變形后的關(guān)系式中,求出另一個未知數(shù)的值.⑤把求得的x、y的值;加減法解二元一次方程組的一般步驟:①方程組的兩個方程中,如果同一個未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當(dāng)?shù)臄?shù)去乘方程的兩邊,使某一個未知數(shù)的系數(shù)相等或互為相反數(shù).②把兩個方程的兩邊分別相減或相加,消去一個未知數(shù),得到一個一元一次方程.③解這個一元一次方程,求得未知數(shù)的值.④將求出的未知數(shù)的值代入原方程組的任意一個方程中,求出另一個未知數(shù)的值.⑤把所求得的兩個未知數(shù)的值寫在一起,就得到原方程組的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案