【題目】如圖,已知∠AOB=a外有一點P,畫點P關于直線OA的對稱點P′,再作點P′關于直線OB的對稱點P″.

(1)試猜想∠POP″a的大小關系,并說出你的理由.

(2)當P為∠AOB 內(nèi)一點或∠AOB邊上一點時,上述結論是否成立?

【答案】(1)POP″=2α (2)成立

【解析】

(1)根據(jù)軸對稱的性質(zhì)畫出圖形,再由直角三角形全等的判定定理得出DOP′≌△DOP,EOP″≌△EOP′,根據(jù)全等三角形的性質(zhì)即可得出結論

(2)根據(jù)題意畫出圖形,同(1)可得出結論

(1)猜想:∠POP″=2α.

理由:如圖1,在DOP′DOP

,

∴△DOP′≌△DOP.

同理可得,EOP″≌△EOP′

∴∠POP″=2α;

(2)成立.

如圖2,當點P在∠AOB內(nèi)時,

∵同(1)可得,

DOP′≌△DOP,EOP″≌△EOP′,

∴∠POD=P′OD,EOP″=EOP′,

∴∠POP″=P′OP″﹣POP′=3α﹣α=2α.

如圖3,當點P在∠AOB的邊上時,

∵同(1)可得EOP″≌△EOP,

∴∠POP″=2α.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解家長關注孩子成長方面的狀況,學校開展了針對學生家長的“您最關心孩子哪方面成長”的主題調(diào)查,調(diào)查設置了“健康安全”、“日常學習”、“習慣養(yǎng)成”、“情感品質(zhì)”四個項目,并隨機抽取甲、乙兩班共100位學生家長進行調(diào)查,根據(jù)調(diào)查結果,繪制了如圖不完整的條形統(tǒng)計圖.
(1)補全條形統(tǒng)計圖.
(2)若全校共有3600位學生家長,據(jù)此估計,有多少位家長最關心孩子“情感品質(zhì)”方面的成長?
(3)綜合以上主題調(diào)查結果,結合自身現(xiàn)狀,你更希望得到以上四個項目中哪方面的關注和指導?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線的函數(shù)關系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長分別為2和4的兩個全等三角形,開始它們在左邊重疊,大△ABC固定不動,然后把小△A′B′C′自左向右平移,直至移到點B′到C重合時停止,設小三角形移動的距離為x,兩個三角形的重合部分的面積為y,則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊ABC的邊長為a,B,Cx軸上,Ay軸上.

(1)作ABC關于x軸的對稱圖形A′B′C′;

(2)求ABC各頂點坐標和A′B′C′各頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,操場上有一根旗桿AH,為測量它的高度,在B和D處各立一根高1.5米的標桿BC、DE,兩桿相距30米,測得視線AC與地面的交點為F,視線AE與地面的交點為G,并且H、B、F、D、G都在同一直線上,測得BF為3米,DG為5米,求旗桿AH的高度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的3個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B順時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則線段AB掃過的圖形面積是平方單位(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點,且∠EDF+EAF=180°,求證DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習過程中,對教材中的一個有趣問題做如下探究:

(習題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點F.求證:∠CFE=CEF;

(變式思考)如圖2,在△ABC中,∠ACB=90°,CDAB邊上的高,若△ABC的外角∠BAG的平分線交CD的延長線于點F,其反向延長線與BC邊的延長線交于點E,則∠CFE與∠CEF還相等嗎?說明理由;

(探究廷伸)如圖3,在△ABC中,在AB上存在一點D,使得∠ACD=B,角平分線AECD于點F.ABC的外角∠BAG的平分線所在直線MNBC的延長線交于點M.試判斷∠M與∠CFE的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案