如圖,平行四邊形ABCD中,點E、F、G、H分別在AB、BC、CD、AD邊上且AE=CG,AH=CF.
(1)求證:四邊形EFGH是平行四邊形;
(2)如果AB=AD,且AH=AE,求證:四邊形EFGH是矩形.

證明:(1)在平行四邊形ABCD中,∠A=∠C,
又∵AE=CG,AH=CF,
∴△AEH≌△CGF.
∴EH=GF.
在平行四邊形ABCD中,AB=CD,AD=BC,
∴AB-AE=CD-CG,AD-AH=BC-CF,
即BE=DG,DH=BF.
又∵在平行四邊形ABCD中,∠B=∠D,∴△BEF≌△DGH.
∴GH=EF.
∴四邊形EFGH是平行四邊形.

(2)解法一:在平行四邊形ABCD中,AB∥CD,AB=CD.
設∠A=α,則∠D=180°-α.
∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,
∴AD-AH=CD-CG,即DH=DG.
∴∠DHG=∠DGH=
∴∠EHG=180°-∠DHG-∠AHE=90°.
又∵四邊形EFGH是平行四邊形,
∴四邊形EFGH是矩形.

解法二:連接BD,AC.
∵AH=AE,AD=AB,
,∴HE∥BD,
同理可證,GH∥AC,
∵四邊形ABCD是平行四邊形且AB=AD,
∴平行四邊形ABCD是菱形,
∴AC⊥BD,∴∠EHG=90°.
又∵四邊形EFGH是平行四邊形,
∴四邊形EFGH是矩形.
分析:(1)易證得△AEH≌△CGF,從而證得BE=DG,DH=BF.故有,△BEF≌△DGH,根據(jù)兩組對邊分別相等的四邊形是平行四邊形而得證.
(2)由題意知,平行四邊形ABCD是菱形,連接AC,BD,則有AC⊥BD,由AB=AD,且AH=AE可證得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四邊形HGFE是平行四邊形,故四邊形HGFE是矩形.
點評:本題利用了平行四邊形的判定和性質,全等三角形的判定和性質,菱形的判定和性質,矩形的判定求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點,且S△AOE=
16
3
,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點,AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉一定角度后,分別交BC、AD于點E、F.
精英家教網(wǎng)
(1)試說明在旋轉過程中,線段AF與EC總保持相等;
(2)當旋轉角為90°時,在圖2中畫出直線AC旋轉后的位置并證明此時四邊形ABEF是平行四邊形;
(3)在直線AC旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).(圖供畫圖或解釋時使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對角線AC和BD相交于點O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習冊答案