【題目】綜合與探究
如圖,拋物線y=﹣x2+2x+6與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,其對稱軸與拋物線交于點D.與x軸交于點E.
(1)求點A,B,D的坐標;
(2)點G為拋物線對稱軸上的一個動點,從點D出發(fā),沿直線DE以每秒2個單位長度的速度運動,過點C作x軸的平行線交拋物線于M,N兩點(點M在點N的左邊).
設(shè)點G的運動時間為ts.
①當t為何值時,以點M,N,B,E為頂點的四邊形是平行四邊形;
②連接BM,在點G運動的過程中,是否存在點M.使得∠MBD=∠EDB,若存在,求出點M的坐標;若不存在,請說明理由;
(3)點Q為坐標平面內(nèi)一點,以線段MN為對角線作萎形MENQ,當菱形MENQ為正方形時,請直接寫出t的值.
【答案】(1)A(﹣2,0),B(6,0);D(2,8);(2)①見解析;②存在,理由見解析;
(3)t=.
【解析】分析:(1)令y=0,解方程﹣x2+2x+6=0,即可求出A、B點的坐標,把y=﹣x2+2x+6改寫成頂點式,根據(jù)二次函數(shù)的性質(zhì)求出D點的坐標;
(2)①要使四邊形MEBN為平行四邊形,則MN=BE=4,根據(jù)二次函數(shù)的對稱性求出點M的坐標,從而求出DG的長,由DG=2t可求出t的值;②設(shè)BM交DE于P,如圖,設(shè)P(2,m),在Rt△BEP中,根據(jù)PE2+BE2=PB2,列方程求出m的值,用待定系數(shù)法求出直線BP的解析式,與二次函數(shù)解析式聯(lián)立,可求出點M的坐標;
(3)由正方形的性質(zhì)得GN=GE=8﹣2t,從而表示出點N的坐標,把點N的坐標代入二次函數(shù)解析式求出t的值.
詳解:(1)當y=0時,﹣x2+2x+6=0,解得x1=﹣2,x2=6,則A(﹣2,0),B(6,0);
∵y=﹣(x﹣2)2+8,
∴D(2,8);
(2)①∵E(2,0),B(6,0),
∴BE=4,
∵四邊形MEBN為平行四邊形,
∴MN=BE=4,
∵MN∥x軸,
∴MG=NG=2,
∴M點的橫坐標為0,此時M(0,6)
∴2t=8﹣6,解得t=1,
∴當t為1s時,以點M,N,B,E為頂點的四邊形是平行四邊形;
②存在.
設(shè)BM交DE于P,如圖,設(shè)P(2,m)
∵∠MBD=∠EDB,
∴PD=PB=8﹣m,
在Rt△BEP中,∵PE2+BE2=PB2,
∴m2+42=(8﹣m)2,解得m=5,
∴P(2,3),
設(shè)直線BP的解析式為y=px+q,
把B(6,0),P(2,3)代入得,解得,
∴直線BP的解析式為y=﹣x+,
解方程組得或,
∴M點的坐標為(﹣,);
(3)GE=8﹣2t,
∵菱形MENQ為正方形時,
∴GN=GE=8﹣2t,
∴N(10﹣2t,8﹣2t),
把N(10﹣2t,8﹣2t)代入y=﹣x2+2x+6得﹣(10﹣2t)2+2(10﹣2t)+6=8﹣2t,
整理得t2﹣9t+16,
∴t=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠流長.在文學(xué)方面,《西游記》《三國演義》《水滸傳》《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中進行了抽樣調(diào)查.根據(jù)調(diào)查結(jié)果繪制成如所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:
(1) 本次調(diào)查一共抽取了______名學(xué)生;扇形統(tǒng)計圖中“1部”所在扇形的圓心角為______度
(2) 若該中學(xué)有1000名學(xué)生,請估計至少閱讀3部四大古典名著的學(xué)生有多少名?
(3) 沒有讀過四大名著的兩名學(xué)生準備從四大古典名著中各自隨機選擇一部來閱讀,則他們選中同一名著的概率為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P、Q在數(shù)軸上表示的數(shù)分別是-8、4,點P以每秒2個單位的速度運動,點Q以每秒1個單位的速度運動.設(shè)點P、Q同時出發(fā)向右運動,運動時間為t秒.
(1)若運動2秒時,則點P表示的數(shù)為_______,點P、Q之間的距離是______個單位;
(2)求經(jīng)過多少秒后,點P、Q重合?
(3)試探究:經(jīng)過多少秒后,點P、Q兩點間的距離為6個單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點坐標A(﹣1,3),與x軸的一個交點B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①2a﹣b=0;②abc<0;③拋物線與x軸的另一個交點坐標是(3,0);④方程ax2+bx+c﹣3=0有兩個相等的實數(shù)根;⑤當﹣4<x<﹣1時,則y2<y1.
其中正確的是( 。
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小莉的爸爸買了今年七月份去上?词啦⿻囊粡堥T票,她和哥哥兩人都很想去觀看,可門票只有一張,讀九年級的哥哥想了一個辦法,拿了八張撲克牌,將數(shù)字為1,2,3,5的四張牌給小莉,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進行:小莉和哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小莉去;如果和為奇數(shù),則哥哥去.
(1)請用數(shù)狀圖或列表的方法求小莉去上?词啦⿻母怕;
(2)哥哥設(shè)計的游戲規(guī)則公平嗎?若公平,請說明理由;若不公平,請你設(shè)計一種公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王購買了一套房子,他準備將地面都鋪上地磚,地面結(jié)構(gòu)如圖所示,請根據(jù)圖中的數(shù)據(jù)(單位:米),解答下列問題:
(1)用含x,y的代數(shù)式表示地面總面積為 平方米;
(2)若x=5,y=1,鋪地磚每平方米的平均費用為100元,則鋪地磚的總費用為 元;
(3)已知房屋的高度為3米,現(xiàn)需要在客廳和臥室的墻壁上貼壁紙,那么用含x的代數(shù)式表示至少需要 平方米的壁紙;如果所粘壁紙的價格是100元/平方米,那么用含x的代數(shù)式表示購買該壁紙至少需要 元.(計算時不扣除門,窗所占的面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是( )
A. 3 B. 4 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意四個有理數(shù),可以組成兩個有理數(shù)對與.
我們規(guī)定:.
例如:.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對 ;
(2)若有理數(shù)對,則 ;
(3)當滿足等式的是整數(shù)時,求整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EB.若AB=8,CD=2.
(1) 求⊙O半徑OA的長;
(2) 求EB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com