如果二次函數(shù)的最小值為負數(shù),則m的取值范圍是(   )
A.m﹤1B.m﹥1C.m≤1D.m≥1
A.

試題分析:
∵二次函數(shù)的最小值為負數(shù),
.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在等腰△ABC中,底邊BC=8,高AD=2,一動點Q從B點出發(fā),以每秒1個單位的速度沿BC向右運動,到達D點停止;另一動點P從距離B點1個單位的位置出發(fā),以相同的速度沿BC向右運動,到達DC中點停止;已知P、Q同時出發(fā),以PQ為邊作正方形PQMN,使正方形PQMN和△ABC在BC的同側,設運動的時間為t秒(t≥0).
(1)當點N落在AB邊上時,t的值為   ,當點N落在AC邊上時,t的值為   ;
(2)設正方形PQMN與△ABC重疊部分面積為S,求出當重疊部分為五邊形時S與t的函數(shù)關系式以及t的取值范圍;
(3)(本小題選做題,做對得5分,但全卷不超過150分)
如圖2,分別取AB、AC的中點E、F,連接ED、FD,當點P、Q開始運動時,點G從BE中點出發(fā),以每秒 個單位的速度沿折線BE-ED-DF向F點運動,到達F點停止運動.請問在點P的整個運動過程中,點G可能與PN邊的中點重合嗎?如果可能,請直接寫出t的值或取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線交坐標軸于A、B、D三點,過點D作軸的平行線交拋物線于點C.直線l過點E(0,-),且平分梯形ABCD面積.
⑴ 直接寫出A、B、D三點的坐標;
⑵ 直接寫出直線l的解析式;
⑶ 若點P在直線l上,且在x軸上方,tan∠OPB=,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線過點,這條拋物線的對稱軸與x軸交于點C,點P為射線CB上一個動點(不與點C重合),點D為此拋物線對稱軸上一點,且?CPD=
(1)求拋物線的解析式;
(2)若點P的橫坐標為m,△PCD的面積為S,求S與m之間的函數(shù)關系式;
(3)過點P作PE⊥DP,連接DE,F(xiàn)為DE的中點,試求線段BF的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在氣候對人類生存壓力日趨加大的今天,發(fā)展低碳經濟,全面實現(xiàn)低碳生活成為人們的共識,某企業(yè)采用技術革新,節(jié)能減排,經分析前5個月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應獲得的利潤也有所提高,且相應獲得的利潤p(萬元)與月份x(月)的函數(shù)關系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
(2)受國家政策的鼓勵,該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個月的基礎上都下降a%,與此同時,每排放一噸二氧化碳,企業(yè)相應獲得的利潤在上一個月的基礎上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個位).
(參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),直線與x軸交于點A、與y軸交于點D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經過等腰梯形的四個頂點.

圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點P為BC上的—個動點(與B、C不重合),以P為圓心,BP長為半徑作圓,與軸的另一個交點為E,作EF⊥AD,垂足為F,請判斷EF與⊙P的位置關系,并給以證明;

圖(2)
(3) 在(2)的條件下,是否存在點P,使⊙P與y軸相切,如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,拋物線經過平移得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分的面積為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=-x2+2x+3的頂點坐標是(  )
A.(-1,4) B.(1,3) C.(-1,3) D.(1,4)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=1,BC=3,點E為BC邊上的動點(點E與點B、C不重合),設BE=x.
操作:在射線BC上取一點F,使得EF=BE,以點F為直角頂點、EF為邊作等腰直角三角形EFG,設△EFG與矩形ABCD重疊部分的面積為S.
(1)求S與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)S是否存在最大值?若存在,請直接寫出最大值,若不存在,請說明理由.
 

查看答案和解析>>

同步練習冊答案