精英家教網 > 初中數學 > 題目詳情
已知:如圖,AB=3,AC=4,AB⊥AC,BD=12,CD=13.
(1)求BC的長度;
(2)線段BC與線段BD的位置關系是什么?說明理由.
(1)∵AB=3,AC=4,AB⊥AC,
∴BC=
AB2+AC2
=5;

(2)BC⊥BD,理由如下:
∵BC=5,BD=12,CD=13,
∴BC2+BD2=25+144=169=132=CD2,
∴∠CBD=90°,
∴BC⊥BD.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

已知a,b、c是三角形的三邊,且滿足b2=(c+a)(c-a),5a-3c=0,則sinA+sinB=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

由下列條件不能判定△ABC為直角三角形的是(  )
A.∠A+∠B=∠CB.∠A:∠B:∠C=1:3:2
C.(b+c)(b-c)=a2D.a=
1
3
,b=
1
4
,c=
1
5

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知四組數據:①2,3,4;②3,4,5;③1,
3
,2;④32,42,52.分別以每組數據中的三個數為三角形的三邊長,構成直角三角形的有( 。
A.②B.②④C.②③④D.②③

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,∠ACD=90°,AD=13,CD=12,BC=3,AB=4,請判定△ABC的形狀并計算其面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,D是BC邊上的一點,若AB=10,AD=8,AC=17,BD=6,求BC的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,∠D=90°,AB=12,BC=13,CD=4,AD=3,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,AD為邊BC上的高,AB=13,AD=12,AC=15.求BC的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

圖1、圖2中的每個小正方形的邊長都是1,在圖1中畫出一個面積是3的直角三角形;在圖2中畫出一個面積是5的四邊形.

查看答案和解析>>

同步練習冊答案