如圖,△ABC是等邊三角形,△BDC是頂角∠BDC=120°的等腰三角形,M是AB延長(zhǎng)線(xiàn)上一點(diǎn),N是CA延長(zhǎng)線(xiàn)上一點(diǎn),且∠MDN=60°.試探究BM、MN、CN之間的數(shù)量關(guān)系,并給出證明.

解:CN=MN+BM
證明:在CN上截取點(diǎn)E,使CE=BM,連接DE,
∵△ABC為等邊三角形,
∴∠ACB=∠ABC=60°,
又△BDC為等腰三角形,且∠BDC=120°,
∴BD=DC,∠DBC=∠BCD=30°,
∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°,
在△MBD和△ECD中,,
∴△MBD≌△ECD(SAS),
∴MD=DE,∠MDB=∠EDC,
又∵∠MDN=60°,∠BDC=120°,
∴∠EDN=∠BDC-(∠BDN+∠EDC)=∠BDC-(∠BDN+∠MDB)=∠BDC-∠MDN=120°-60°=60°,
∴∠MDN=∠EDN,
在△MND與△END中,
,
∴△MND≌△END(SAS),
∴MN=NE,
∴CN=NE+CE=MN+BM.
分析:先求證△MBD≌△ECD可得MD=DE,∠MDB=∠EDC,進(jìn)而求證△MND≌△END,即可得MN=NE,即可證明CN=NE+CE=MN+BM,即可解題.
點(diǎn)評(píng):本題考查了全等三角形的證明,考查了全等三角形對(duì)應(yīng)邊、對(duì)應(yīng)角相等的性質(zhì),考查了等邊三角形各邊長(zhǎng)、各內(nèi)角為60°的性質(zhì),本題中求證MN=NE是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,⊙O過(guò)點(diǎn)B,C,且與BA,CA的延長(zhǎng)線(xiàn)分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長(zhǎng)線(xiàn)交BC的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,△ABC是等邊三角形,過(guò)AB邊上一點(diǎn)D作BC的平行線(xiàn)交AC于E,則△ADE的三個(gè)內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線(xiàn),點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫(xiě)出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案