【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。

【答案】
(1)證明:∵菱形ABCD,

∴AB=CD,AB∥CD,

又∵BE=AB,

∴BE=CD,BE∥CD,

∴四邊形BECD是平行四邊形,

∴BD=EC


(2)解:∵平行四邊形BECD,

∴BD∥CE,

∴∠ABO=∠E=50°,

又∵菱形ABCD,

∴AC丄BD,

∴∠BAO=90°﹣∠ABO=40°


【解析】(1)根據(jù)菱形的對(duì)邊平行且相等可得AB=CD,AB∥CD,然后證明得到BE=CD,BE∥CD,從而證明四邊形BECD是平行四邊形,再根據(jù)平行四邊形的對(duì)邊相等即可得證;(2)根據(jù)兩直線平行,同位角相等求出∠ABO的度數(shù),再根據(jù)菱形的對(duì)角線互相垂直可得AC⊥BD,然后根據(jù)直角三角形兩銳角互余計(jì)算即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(1,0),B(3,0),且過點(diǎn)C(0,﹣3).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)請(qǐng)你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在直線y=﹣x上,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)時(shí),∠A與∠1+∠2之間有始終不變的關(guān)系是(  )

A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2 C. 3∠A=∠1+∠2 D. 3∠A=2(∠1+∠2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)水庫的可用水量為12000萬立方米,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.實(shí)施城市化建設(shè),新遷入4萬人后,水庫只夠維持居民15年的用水量.
(1)問:年降水量為多少萬立方米?每人年平均用水量多少立方米?
(2)政府號(hào)召節(jié)約用水,希望將水庫的保用年限提高到25年,則該鎮(zhèn)居民人均每年需節(jié)約多少立方米才能實(shí)現(xiàn)目標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某省是勞務(wù)輸出大省,農(nóng)民外出務(wù)工增長家庭收入的同時(shí),也一定程度影響了子女的管理和教育,缺少管理和教育的留守兒童的學(xué)習(xí)和心理健康狀況等問題日趨顯現(xiàn),成為社會(huì)關(guān)注的焦點(diǎn).該省相關(guān)部門就留守兒童學(xué)習(xí)和心理健康狀況等問題進(jìn)行調(diào)查,本次抽樣調(diào)查了該省某縣部分留守兒童,將調(diào)查出現(xiàn)的情況分四類,即A類:基本情況正常;B類;有輕度問題;C類:有較為嚴(yán)重問題;D類:有特別嚴(yán)重問題.通過調(diào)查,得到下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解決下面的問題.
(1)在這次隨機(jī)抽樣調(diào)查中,共抽查了多少名學(xué)生留守兒童?
(2)扇形統(tǒng)計(jì)圖中C類所占的圓心角是°;這次調(diào)查中為D類的留守兒童有人;
(3)請(qǐng)你估計(jì)該縣20000名留守兒童中,出現(xiàn)較為嚴(yán)重問題及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].

(1)如圖①,對(duì)△ABC作變換[60°, ]得△AB′C′,則SAB′C′:SABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得△AB′C′,使點(diǎn)B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(3)班為了組隊(duì)參加學(xué)校舉行的“五水共治”知識(shí)競賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行了四次“五水共治”模擬競賽,成績優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖,解答下列問題:
(1)第三次成績的優(yōu)秀率是多少?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已求得甲組成績優(yōu)秀人數(shù)的平均數(shù) =7,方差 =1.5,請(qǐng)通過計(jì)算說明,哪一組成績優(yōu)秀的人數(shù)較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①, 的邊上的高,且cm,cm,點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),其速度與時(shí)間的關(guān)系如圖②所示,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(s),的面積為(cm2 ).

(1)在點(diǎn)沿向點(diǎn)運(yùn)動(dòng)的過程中,它的速度是 cm/s,用含的代數(shù)式表示線段的長是 cm,變量之間的函數(shù)表達(dá)式為;

(2)當(dāng)時(shí),求的值.當(dāng)每增加1時(shí),求的變化情況.

查看答案和解析>>

同步練習(xí)冊(cè)答案