如圖,AB是半圓O的直徑,C為半圓上一點,E是BC的中點,AE交BC于點D,DF⊥AB于F,F(xiàn)為垂足,連接CF.
(1)判斷△CDF的形狀,并證明你的結論;
(2)若AC=8,cos∠CAB=,求線段BC和CD的長.

【答案】分析:(1)易得∠CAE=∠BAE,∠ACB=∠DFC=90°,再加上公共邊,可證得△CDA≌△FDA,即證CD=DF.
(2)利用cos∠CAB的值可求得BC長,設出CD=DF=x,根據(jù)勾股定理列出關于x的方程,求出方程的解即可得到CD的長.
解答:解:(1)等腰三角形.
∵E是BC的中點,
∴∠CAE=∠BAE.
∵AB是半圓O的直徑,DF⊥AB于F,
∴∠ACB=∠DFA=90.
又∵AD=AD,
∴△CDA≌△FDA.
∴CD=DF.

(2)∵AC=8,cos∠CAB=
∴BC=6.
根據(jù)勾股定理得:AB=10,
∵△CDA≌△FDA.
∴AC=AF=8,
∴FB=2,
設CD=DF=x,則BD=BC-CD=6-x,
根據(jù)勾股定理得:x2+22=(6-x)2,
解得:x=
∴CD=
點評:本題考查了同弧所對的圓周角相等,直角三角形的三角函數(shù),以及角平分線所截得的線段的對于比等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點P從點B開始沿BA邊向點A以1cm/s的速度移動,若AB長為10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點D在半圓O上運動,當AD的長為1時,求點A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點D是半圓上一動點,AB=10,AC=8,當△ACD是等腰三角形時,點D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,以OA為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E,則下列結論:①S△O′OE=
1
2
S△AOC2;②點D時AC的中點;③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結論是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,F(xiàn)為垂足,交AC于點C使∠BED=∠C.請判斷直線AC與圓O的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案