【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖所示的方式疊放在一起.

,則的度數(shù)為______;

,求的度數(shù);

猜想之間存在什么數(shù)量關(guān)系?并說明理由;

當(dāng)且點(diǎn)E在直線AC的上方時,這兩塊三角尺是否存在ADBC平行的情況?若存在,請直接寫出的值;若不存在,請說明理由.

【答案】(1);(2);(3)猜想: ,理由見解析;(4)存在,

【解析】分析:(1)根據(jù)∠DCE和∠ACD的度數(shù),求得∠ACE的度數(shù),再根據(jù)∠BCE求得∠ACB的度數(shù);

(2)根據(jù)∠BCE和∠ACB的度數(shù),求得∠ACE的度數(shù),再根據(jù)∠ACD求得∠DCE的度數(shù);

(3)根據(jù)∠ACE=90°-DCE以及∠ACB=ACE+90°,進(jìn)行計算即可得出結(jié)論;

(4)分三種情況進(jìn)行討論:當(dāng)CBAD時,當(dāng)EBAC時,當(dāng)BEAD時,分別求得∠ACE角度.

詳解:

;

猜想:

理由如下:

(4)15°、30°、45°;

理由:當(dāng)CBAD,ACE=30°;

當(dāng)EBAC,ACE=45°;

當(dāng)BEAD,ACE=15°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點(diǎn)P,若∠BPC=40°,則∠CAP的度數(shù)是(

A. 30°; B. 40° C. 50°; D. 60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,任意兩點(diǎn)A (x1,y1),B (x2,y2)規(guī)定運(yùn)算:①AB=( x1+ x2, y1+ y2);②AB= x1 x2+y1 y2③當(dāng)x1= x2y1= y2A=B有下列四個命題:

(1)若A(1,2),B(2,–1),則AB=(3,1),AB=0;

(2)若AB=BC,則A=C;(3)若AB=BC,則A=C;

(4)對任意點(diǎn)A、BC,均有(AB ) C=A ( BC )成立.其中正確命題的個數(shù)為(

A. 1 B. 2 C. 3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你會求(a﹣1)(a2014+a2013+a2012+…+a2+a+1)的值嗎?這個問題看上去很復(fù)雜,我們可以先考慮簡單的情況,通過計算,探索規(guī)律:

;

;

.

(1)由上面的規(guī)律我們可以大膽猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=________

利用上面的結(jié)論,求:

(2)22014+22013+22012+…+22+2+1的值是   。

(3)求52014+52013+52012+…+52+5+1的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=40°,AB的垂直平分線MN交AC于點(diǎn)D,∠DBC=30°,若AB=m,BC=n,則△DBC的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生對三種國慶活動方案的意見,對該校學(xué)生進(jìn)行了一次抽樣調(diào)查(被調(diào)查學(xué)生至多贊成其中的一種方案),現(xiàn)將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了名學(xué)生;扇形統(tǒng)計圖中方案1所對應(yīng)的圓心角的度數(shù)為度;
(2)請把條形統(tǒng)計圖補(bǔ)充完整;
(3)已知該校有1000名學(xué)生,試估計該校贊成方案1的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援某災(zāi)區(qū),某市民政局組織募捐了240噸救災(zāi)物資,現(xiàn)租用甲、乙兩種貨車,將這批救災(zāi)物資一次性全部運(yùn)往災(zāi)區(qū),它們的載貨量和租金如下表:

如果計劃租用6輛貨車,且租車的總費(fèi)用不超過2 300元,求最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)提示填空(8分)

如圖,EFAD,1=2,BAC=80°.將求∠AGD的過程填寫完整.

因?yàn)?/span>EFAD

所以∠2=____(____________________________)

又因?yàn)椤?/span>1=2

所以∠1=3(______________)

所以AB_____(_____________________________)

所以∠BAC+______=180°(_____________________)

因?yàn)椤?/span>BAC=80° 所以∠AGD=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC的各邊都延長一倍至A′、B′、C′,連接這些點(diǎn),得到一個新的三角形A′B′C′,若ABC的面積為1,則A′B′C′的面積是(

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

同步練習(xí)冊答案