【題目】如圖,已知雙曲線 (x>0)經(jīng)過矩形OABC的邊AB、BC上的點F、E,其中CE= CB,AF= AB,且四邊形OEBF的面積為2,則k的值為________

【答案】1

【解析】

設(shè)矩形的長為a,寬為b,則由已知表示出矩形的面積,三角形COE和三角形AOF的面積及四邊形OEBF的面積,從而求出三角形AOF的面積,則求出k的值.

設(shè)矩形的長為a,寬為b,

則由CE=CB,AF=AB,得:

CE=a,AF=b,

∴三角形COE的面積為:ab,

三角形AOF的面積為:ab,

矩形的面積為:ab,

四邊形OEBF的面積為:ab-ab-ab=ab,

四邊形OEBF的面積為2,

ab=2,

∴ab=3,

三角形COE的面積為:ab=,

=,

又由于反比例函數(shù)的圖象位于第一象限,k>0;

∴k=1,

故答案為:1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要求340名學(xué)生進(jìn)行社會調(diào)查,每人須完成3﹣6份報告.調(diào)查結(jié)束后隨機(jī)抽查了20名學(xué)生每人完成報告的份數(shù),并分為四類,A:3份;B:4份;C:5份;D:6份.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯誤.

回答問題:

(1)寫出條形圖中存在的錯誤,并說明理由;

(2)寫出這20名學(xué)生每人完成報告份數(shù)的眾數(shù)、中位數(shù);

(3)在求這20名學(xué)生每人完成報告份數(shù)的平均數(shù)時,小靜是這樣分析的:

第一步求平均數(shù)的公式是=;

第二步在該問題中,n=4,x1=3,x2=4,x3=5,x4=6;

第三步:==4.5(份)

①小靜的分析是從哪一步開始出現(xiàn)錯誤的?

②請你幫她計算出正確的平均數(shù),并估計這340名學(xué)生共完成報告多少份.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有紅、黃兩個盒子,紅盒子中裝有編號分別為1、2、3、4的四個紅球,黃盒子中裝有編號為1、2、3的三個黃球.甲、乙兩人玩摸球游戲,游戲規(guī)則為:甲從紅盒子中每次摸出一個小球,乙從黃盒子中每次摸出一個小球,若兩球編號之和為奇數(shù),則甲勝,否則乙勝.

(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;

(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB表示路燈,CD、C′D′表示小明所在兩個不同位置:

(1)分別畫出這兩個不同位置小明的影子;

(2)小明發(fā)現(xiàn)在這兩個不同的位置上,他的影子長分別是自己身高的1倍和2倍,他又量得自己的身高為1.5米,DD′長為3米,你能幫他算出路燈的高度嗎?(B、D、D′在一條直線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求完成下列各小題.

(1)解方程:x2+6x+2=2x+7;

(2)如圖是反比例函數(shù)y=在第三象限的圖案,點M在該圖象上,且點M到點x軸,y軸的距離都等于|k|,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格.

(1)求四邊形ABCD的面積;

(2)你能判斷ADCD的位置關(guān)系嗎?說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABCC=90°,DBC邊的中點,BD=2,tanB=

1)求ADAB的長

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜坡AB的坡度為1:2.4,長度為26m,在坡頂B所在的平臺上有一座電視塔CD,已知在A處測得塔頂D的仰角為45°,在B處測得塔頂D的仰角為73°,求電視塔CD的高度. (參考數(shù)值:sin73°≈ ,cos73°≈0. ,tan73°≈

查看答案和解析>>

同步練習(xí)冊答案