拋物線的頂點為(3,3),且點(2,-2)在拋物線上,求拋物線的解析式.
設(shè)拋物線的解析式為y=a(x-3)2+3,
把(2,-2)代入得a×(2-3)2+3=-2,解得a=-5,
所以拋物線的解析式為y=-5(x-3)2+3.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,在平面直角坐標系中,Rt△ABC的斜邊BC在x軸上,直角頂點A在y軸的正半軸上,A(0,2),B(-1,0).
(1)求點C的坐標;
(2)求過A、B、C三點的拋物線的解析式和對稱軸;
(3)設(shè)點P(m,n)是拋物線在第一象限部分上的點,△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點A(3,0),B(8,0),與y軸交于點C,且AC平分∠OCB,直線l是它的對稱軸.
(1)求直線l和拋物線的解析式;
(2)直線BC與l相交于點D,沿直線l平移直線BC,與直線l,y軸分別交于點E,F(xiàn),探究四邊形CDEF為菱形時點E的坐標;
(3)線段CB上有一動點P,從C點開始以每秒一個單位的速度向B點運動,PM⊥BC,交線段CA于點M,記點P運動時間為t,△CPO與△CPM的面積之差為y,求y與t(0<t≤6)之間的關(guān)系式,并確定在運動過程中y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=-
3
4
x2+
9
4
x+3與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C.
(1)求A、B、C三點的坐標;
(2)求直線BC的函數(shù)解析式;
(3)點P是直線BC上的動點,若△POB為等腰三角形,請寫出此時點P的坐標.(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A,B,C三點,當x≥0時,其圖象如圖所示.
(1)求拋物線的解析式,寫出拋物線的頂點坐標;
(2)畫出拋物線y=ax2+bx+c當x<0時的圖象;
(3)利用拋物線y=ax2+bx+c,寫出x為何值時,y>0.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△AOB的兩直角邊OA、OB的長分別是1和3,將△AOB繞O點按逆時針方向旋轉(zhuǎn)90°,至△DOC的位置.
(1)求過C、B、A三點的二次函數(shù)的解析式;
(2)若(1)中拋物線的頂點是M,判定△MDC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸相交于點C.連接AC,BC,A(-3,0),C(0,
3
),且當x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.
①當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
②拋物線的對稱軸上是否存在點Q,使得以B、N、Q為頂點的三角形與△A0C相似?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
③當運動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-ax2+2ax+b與x軸的一個交點為A(-1,0),與y軸的正半軸交于點C.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點B的坐標;
(2)當點C在以AB為直徑的⊙P上時,求拋物線的解析式;
(3)坐標平面內(nèi)是否存在點M,使得以點M和(2)中拋物線上的三點A、B、C為頂點的四邊形是平行四邊形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,中國首個空間實驗室“天宮一號”于2011年9月29日成功發(fā)射.某科技實驗小組也自行設(shè)計了火箭,經(jīng)測試,該種火箭被豎直向上發(fā)射時,它的高度h(m)與時間t(s)的關(guān)系可以用公式h=-t2+10t-15表示,經(jīng)過______s,火箭達到它的最高點10米處.

查看答案和解析>>

同步練習冊答案