【題目】下列圖形中,是軸對稱圖形但不是中心對稱圖形的是(
A.等邊三角形
B.正六邊形
C.正方形
D.圓

【答案】A
【解析】解:等邊三角形是軸對稱圖形但不是中心對稱圖形,A正確; 正六邊形是軸對稱圖形,也是中心對稱圖形,B錯誤;
正方形是軸對稱圖形,也是中心對稱圖形,C錯誤;
圓是軸對稱圖形,也是中心對稱圖形,D錯誤;
故選:A.
【考點精析】本題主要考查了軸對稱圖形的相關知識點,需要掌握兩個完全一樣的圖形關于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙C的半徑為r(r>1),P是圓內與圓心C不重合的點,⊙C的“完美點”的定義如下:若直線CP與⊙C交于點A,B,滿足|PA-PB|=2,則稱點P為⊙C的“完美點”,如圖為⊙C及其“完美點”P的示意圖.

(1)當⊙O的半徑為2時,

①點M(,0)  ⊙O的“完美點”,點N(0,1)  ⊙O的“完美點”,點T(-,-   ⊙O的“完美點”(填“是”或者“不是”);

②若⊙O的“完美點”P在直線y=x上,求PO的長及點P的坐標;

(2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C的“完美點”,求圓心C的縱坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點D為AB的中點.

(1)如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,則經(jīng)過后,點P與點Q第一次在△ABC的邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為⊙O的直徑,點B在⊙O上,連接BCBD,過點B的切線AECD的延長線交于點A, OEBC于點F.

(1)求證:OEBD;

(2)當⊙O的半徑為5, 時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為更好地開展傳統(tǒng)文化進校園活動,隨機抽查了部分學生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.

最喜愛的傳統(tǒng)文化項目類型頻數(shù)分布表

根據(jù)以上信息完成下列問題:

(1)直接寫出頻數(shù)分布表中a的值;

(2)補全頻數(shù)分布直方圖;

(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)2,4,x,2,4,7的眾數(shù)是2,則這組數(shù)據(jù)的平均數(shù),中位數(shù)分別為( 。

A. 3.5,3 B. 3,4 C. 3,3.5 D. 4,3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(

A.3a3+ a 3=4 a 6B.( a +b)2= a 2+b2C.5 a5 a =0 D.(a)2·a 3=a 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=2,B=C,可推得ABCD.理由如下:

∵∠1=2(已知),

且∠1=CGD_______

∴∠2=CGD(等量代換)

CEBF_______

∴∠_____=BFD_______

又∵∠B=C(已知)

∴∠BFD=B(等量代換)

ABCD_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A.a6÷a2=a3
B.a5﹣a2=a3
C.(3a32=6a9
D.2(a3b)2﹣3(a3b)2=﹣a6b2

查看答案和解析>>

同步練習冊答案