如圖,已知AB∥CD,直線EF分別交AB、CD于點(diǎn)E、F,過(guò)E作EG⊥EF于點(diǎn)E,交CD于點(diǎn)G.
若∠CFE=120°,則∠BEG的大小為( )

A.20°
B.30°
C.60°
D.120°
【答案】分析:由AB∥CD,根據(jù)平行線的性質(zhì)可得,∠BEF=∠CFE=120°,再由EG⊥EF,可得∠FEG=90°,那么,∠BEG=∠BEF-∠FEG.
解答:解:∵AB∥CD,
∴∠BEF=∠CFE=120°(兩直線平行,內(nèi)錯(cuò)角相等),
又∵EG⊥EF,
∴∠FEG=90°,
∴∠BEG=∠BEF-∠FEG=120°-90°=30°.
故選B.
點(diǎn)評(píng):此題是平行線的性質(zhì)的應(yīng)用,解題的關(guān)鍵是由平行線的性質(zhì)求出∠BEF,由EG⊥EF得出∠FEG=90°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知AB=CD且∠ABD=∠BDC,要證∠A=∠C,判定△ABD≌△CDB的方法是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,已知AB∥CD,∠A=38°,則∠1=
142°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB∥CD,∠1=50°25′,則∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知 AB∥CD,∠A=53°,則∠1的度數(shù)是
127°
127°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB∥CD∥EF,那么下列結(jié)論中,正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案