【題目】如圖,已知點A(﹣m,n),B(0,m),且m、n滿足+(n﹣5)2=0,點C在y軸上,將△ABC沿y軸折疊,使點A落在點D處.
(1)寫出D點坐標并求A、D兩點間的距離;
(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度數(shù);
(3)過點C作QH平行于AB交x軸于點H,點Q在HC的延長線上,AB交x軸于點R,CP、RP分別平分∠BCQ和∠ARX,當(dāng)點C在y軸上運動時,∠CPR的度數(shù)是否發(fā)生變化?若不變,求其度數(shù);若變化,求其變化范圍.
【答案】(1)10;(2)20°;(3)∠CPH=45°.理由見解析.
【解析】分析:(1)先由非負數(shù)的性質(zhì)求出m,n的值,得到A點坐標,再根據(jù)折疊的性質(zhì)得點D與點A關(guān)于y軸對稱,再根據(jù)關(guān)于y軸對稱的點的坐標特征得到D點坐標,然后計算點A與點D的橫坐標之差即可得到A、D兩點間的距離;
(2)根據(jù)折疊的性質(zhì)得∠DCF=∠ACF,再利用三角形外角性質(zhì)得∠DCF=∠EFB+∠DEF,則∠EFB=∠ACF-∠DEF,又∠DEF=∠AEF,所以∠EFB=∠ACF-∠AEF=20°;
(3)根據(jù)平行線的性質(zhì)由QH∥AB得到∠QCP=∠1,∠ARX=∠3,再根據(jù)角平分線的定義得∠QCP=∠BCQ,∠2=∠ARX,則∠1=∠BCQ,∠2=∠3,接著利用三角形外角性質(zhì)得∠BCQ=90°+∠3,所以2∠1=90°+2∠2,即∠1=45°+∠2,然根據(jù)∠1=∠CPR+∠2即可得到∠CPR=45°.
詳解:(1)∵+(n-5)2=0,
∴m+5=0,n-5=0,
∴m=-5,n=5,
∴A點坐標為(5,5),
∵△ABC沿y軸折疊,使點A落在點D處,
∴點D與點A關(guān)于y軸對稱,
∴D點坐標為(-5,5);
∴AD=5-(-5)=10;
(2)如圖2,
∵△ABC沿x軸折疊,使點A落在點D處,
∴∠DCF=∠ACF,
∵∠DCF=∠EFB+∠DEF,
∴∠EFB=∠ACF-∠DEF,
∵EF平分∠AED,
∴∠DEF=∠AEF,
∴∠EFB=∠ACF-∠AEF=20°;
(3)∠CPH=45°.理由如下:
如圖3,
∵QH∥AB,
∴∠QCP=∠1,∠ARX=∠3,
∵CP、RP分別平分∠BCQ和∠ARX,
∴∠QCP=∠BCQ,∠2=∠ARX,
∴∠1=∠BCQ,∠2=∠3,
∵∠BCQ=90°+∠3,
∴2∠1=90°+2∠2,即∠1=45°+∠2,
∵∠1=∠CPR+∠2,
∴∠CPR=45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,27)=_______,(5,1)=_______,(2, )=_______.
(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:
設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
請你嘗試運用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E是AB的中點,以點E為圓心,EB為半徑畫弧,交BC于點D,連接ED并延長到點F,使DF=DE,連接FC,若∠B=70°,則∠F的度數(shù)是( 。
A. 40 B. 70 C. 50 D. 45
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小杰到學(xué)校食堂買飯,看到A、B兩窗口前面排隊的人一樣多(設(shè)為a人,a>8),就站在A窗口隊伍的后面,過了2分鐘,他發(fā)現(xiàn)A窗口每分鐘有4人買了飯離開隊伍,B窗口每分鐘有6人買了飯離開隊伍,且B窗口隊伍后面每分鐘增加5人.
(1)此時,若小杰繼續(xù)在A窗口排隊,則他到達窗口所花的時間是多少?(用含a的代數(shù)式表示)
(2)此時,若小杰迅速從A窗口隊伍轉(zhuǎn)移到B窗口后面重新排隊,且到達B窗口所花的時間比繼續(xù)在A窗口排隊到達A窗口所花的時間少,求a的取值范圍.(不考慮其它因素)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某燈泡廠的一次質(zhì)量檢查,從3000個燈泡中抽查了300個,其中有6個不合格,則出現(xiàn)不合格燈泡的頻率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校某年級秋游,若租用48座客車若干輛,則正好坐滿;若租用64座客車,則能少租1輛,且有一輛車沒有坐滿,但超過一半.
(1)需租用48座客車多少輛? 解:設(shè)需租用48座客車x輛.則需租用64座客車輛.當(dāng)租用64座客車時,未坐滿的那輛車還有個空位(用含x的代數(shù)式表示).由題意,可得不等式組:解這個不等式組,得: .
因此,需租用48座客車輛.
(2)若租用48座客車每輛250元,租用64座客車每輛300元,應(yīng)租用哪種客車較合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com