在下面圖3的各圖中,a∥b,分別計算∠1的度數(shù)分別是                    

            

圖3

90°,154°,60°;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

17、實際問題:某學(xué)校共有18個教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級,那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機(jī)摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
6
;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是
46
;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
1+m

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+m(n-1)

問題解決:(1)請把本題中的“實際問題”轉(zhuǎn)化為一個從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、讀一讀,想一想,做一做
現(xiàn)有足夠的2×2,3×3的正方形和2×3的矩形圖片A、B、C(如圖),現(xiàn)從中各選取若干個圖片拼成不同的圖形.請你在下面給出的方格紙中,按下列要求分別畫出一種示意圖(說明:下面給出的方格紙中,每個小正方形的邊長均為1.拼出的圖形,要求每兩個圖片之間既無縫隙,也不重疊.畫圖必須保留拼圖的痕跡)
①選取A型、B型兩種圖片各1塊,C型圖片2塊,在下面的圖中拼成一個正方形;
②選取A型4塊,B型圖片1塊,C型圖片4塊,在下面的圖中拼成一個正方形;
③選取A型3塊,B型圖片1塊,再選取若干塊C型圖片,在下面的圖中拼成一個矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

27、閱讀下面的材料并解答問題.
圖形是一種重要的數(shù)學(xué)語言,它直觀形象,能有效地表現(xiàn)一些代數(shù)中的數(shù)量關(guān)系.例如完全平方公式可以用平面幾何圖形的面積來表示,實際上還有一些代數(shù)恒等式也可以用這種形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用圖1或圖2等圖形的面積表示:

(1)請寫出圖3所表示的代數(shù)恒等式:
(a+2b)(2a+b)=2a2+5ab+2b2

解決問題:
某鋼鐵加工廠現(xiàn)有足夠的2×2,3×3的正方形和2×3的矩形下腳料A、B、C(如圖所示),現(xiàn)從中各選取若干個下腳料焊接成不同的圖形,請你在下面給出的方格紙中,按下列要求分別畫出一種示意圖(說明:下面給出的方格紙中,每個小正方形的邊長均為1,拼出的圖形,要求每兩個圖片之間既無縫隙,也無重疊,畫圖必須保留拼較的痕跡)
A、B、C、
(2)選取A型4塊,B型兩種圖片1塊,C型圖片4塊,在下面的圖2中拼成一個正方形;
利用面積法去解,如圖所示.

(3)選取A型3塊,B型兩種圖片1塊,C型圖片若干塊,在下面的圖3中拼成一個長方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第28章《概率初步》中考題集(30):28.2 等可能情況下的概率計算(解析版) 題型:解答題

實際問題:某學(xué)校共有18個教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級,那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機(jī)摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是______;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是______;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是______.
模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是______.
(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是______.
問題解決:(1)請把本題中的“實際問題”轉(zhuǎn)化為一個從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

同步練習(xí)冊答案