【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分線BD,交AC于點(diǎn)D;
(2)作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明);
(3)連接DE,求證:△ADE≌△BDE.
【答案】(1)作圖見解析;(2)作圖見解析;(3)證明見解析.
【解析】試題分析:(1)①以B為圓心,任意長為半徑畫弧,交AB、BC于F、N,再以F、N為圓心,大于FN長為半徑畫弧,兩弧交于點(diǎn)M,過B、M畫射線,交AC于D,線段BD就是∠B的平分線;
(2)分別以A、B為圓心,大于AB長為半徑畫弧,兩弧交于X、Y,過X、Y畫直線與AB交于點(diǎn)E,點(diǎn)E就是AB的中點(diǎn);
(3)首先根據(jù)角平分線的性質(zhì)可得∠ABD的度數(shù),進(jìn)而得到∠ABD=∠A,根據(jù)等角對等邊可得AD=BD,再加上條件AE=BE,ED=ED,即可利用SSS證明△ADE≌△BDE.
試題解析:(1)作出∠B的平分線BD;
(2)作出AB的中點(diǎn)E.
(3)證明:
∵∠ABD=×60°=30°,∠A=30°,
∴∠ABD=∠A,
∴AD=BD,
在△ADE和△BDE中,
∴△ADE≌△BDE(SSS).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)畫出格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)關(guān)于直線DE對稱的△A1B1C1;
(2)在DE上畫出點(diǎn)Q,使QA+QC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,若動點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動,且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t為何值時(shí),△BCP為等腰三角形?(要有必要的過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有12名旅客要從A地趕往40千米外的火車站B乘車外出旅游,列車還有3個(gè)小時(shí)從B站出站,且他們只有一輛準(zhǔn)載4人的小汽車可以利用.設(shè)他們的步行速度是每小時(shí)4千米,汽車的行駛速度為每小時(shí)60千米.
(1)若只用汽車接送,12人都不步行,他們能完全同時(shí)乘上這次列車嗎?
(2)試設(shè)計(jì)一種由A地趕往B站的方案,使這些旅客都能同時(shí)乘上這次列車.按此方案,這12名旅客全部到達(dá)B站時(shí),列車還有多少時(shí)間就要出站?(所設(shè)方案若能使全部旅客同時(shí)乘上這次列車即可.若能使全部旅客提前20分鐘以上時(shí)間到達(dá)B站,可得2分加分,但全卷總分不超過100分.)
注:用汽車接送旅客時(shí),不計(jì)旅客上下車時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為3萬元,可變成本逐年增長,已知該養(yǎng)殖戶第1年的可變成本為2.4萬元,設(shè)可變成本平均每年增長的百分率為x.
(1)、用含x的代數(shù)式表示第3年的可變成本為 萬元.
(2)、如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為6.456萬元,求可變成本平均每年增長的百分率?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com