【題目】如圖,在直角△ABC中,∠C=90°,∠CAB的平分線AD交BC于D,若DE垂直平分AB,求∠B的度數(shù).
【答案】30°
解:∵DE垂直平分AB,∴∠DAE=∠B,∵在直角△ABC中,∠C=90°,∠CAB的平分線AD交BC于D,∴∠DAE=(90°-∠B)=∠B,∴3∠B=90°,∴∠B=30°.
【解析】根據(jù)DE垂直平分AB,求證∠DAE=∠B,再利用角平分線的性質(zhì)和三角形內(nèi)角和定理,即可求得∠B的度數(shù).
【考點(diǎn)精析】利用三角形的內(nèi)角和外角和角平分線的性質(zhì)定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC的外接圓⊙O的半徑r=5cm,則斜邊AB的長(zhǎng)是( 。
A.10cmB.8cmC.6cmD.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC邊上的垂直平分線DE與邊BC交于點(diǎn)D,邊AB交于點(diǎn)E.若△EDC的周長(zhǎng)為24,△ABC與四邊形AEDC的周長(zhǎng)之差為12,則線段DE的長(zhǎng)為( 。
A.12
B.6
C.24
D.36
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書(shū)香校園”活動(dòng)中,學(xué)校計(jì)劃開(kāi)展四項(xiàng)活動(dòng):“A﹣國(guó)學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書(shū)法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:
(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué)校現(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1,﹣2),將OA繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°得到OA′,點(diǎn)A′的坐標(biāo)為(a,b),則a﹣b等于( )
A.1
B.﹣1
C.3
D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將二次函數(shù)y=x2﹣4x+3的困象繞著點(diǎn)(﹣1,0)旋轉(zhuǎn)180°,得到新的二次函數(shù)y=ax2+bx+c(a≠0),那么c的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=30°,OB=2,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a ≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0; ②3a+b=0; ③b2=4a(c﹣n); ④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com