8、設(shè)0<k<2,關(guān)于x的一次函數(shù)y=kx+2(1-x),當(dāng)1≤x≤2時(shí)的最大值是( 。
分析:首先確定一次函數(shù)的增減性,根據(jù)增減性即可求解.
解答:解:原式可以化為:y=(k-2)x+2
∵0<k<2
∴k-2<0,則函數(shù)值隨x的增大而減。
∴當(dāng)x=1時(shí),函數(shù)值最大,最大值是:(k-2)+2=k
故選C.
點(diǎn)評(píng):本題主要考查了一次函數(shù)的性質(zhì),正確根性質(zhì)確定當(dāng)x=2時(shí),函數(shù)取得最小值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)0<k<1,關(guān)于x的一次函數(shù)y=kx+
1
k
(1-x),當(dāng)1≤x≤2時(shí),y的最大值是( 。
A、k
B、2k-
1
k
C、
1
k
D、k+
1
k

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知方程x2-5x-
x2-5x
=2.用換元法解此方程時(shí),如果設(shè)y=
x2-5x
,那么得到關(guān)于y的方程是
 
(用一元二次方程的形式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△ABC中,BC=6,AC>AB,點(diǎn)D為AC邊上一點(diǎn),且DC=AB=4,E為BC邊的中點(diǎn),連接DE,設(shè)AD=x.
(1)當(dāng)DE⊥BC時(shí)(如圖1),連接BD,則BD的長(zhǎng)為
 
;
(2)設(shè)
S四邊形ABEDS△CDE
=y
,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)取AD的中點(diǎn)M,連接EM并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)P,以A為圓心AM為半徑作⊙A,試問:當(dāng)AD的長(zhǎng)改變時(shí),點(diǎn)P與⊙A的位置關(guān)系變化嗎?若不變化,請(qǐng)說(shuō)明具體的位置關(guān)系,并證明你的結(jié)論;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)0<k<1,關(guān)于x的一次函數(shù)y=kx+
1k
(1-x)
,當(dāng)1≤x≤2時(shí)y的最大值是
k
k

查看答案和解析>>

同步練習(xí)冊(cè)答案