【題目】問題情境
小明和小麗共同探究一道數(shù)學(xué)題:
如圖①,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索發(fā)現(xiàn)
小明的思路是:延長AD至點(diǎn)E,使DE=AD,構(gòu)造全等三角形.
小麗的思路是:過點(diǎn)C作CE∥AB,交AD的延長線于點(diǎn)E,構(gòu)造全等三角形.
選擇小明、小麗其中一人的方法解決問題情境中的問題.
類比應(yīng)用
如圖②,在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)O是BD的中點(diǎn),
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長為___________.
【答案】
【解析】分析:探索發(fā)現(xiàn):按照兩個(gè)人的做題思路,作圖,證明全等即可.
類比應(yīng)用:參照探索發(fā)現(xiàn)的方法,進(jìn)行求解即可.
詳解:探索發(fā)現(xiàn)
小明的方法:
延長AD至點(diǎn)E,使DE=AD=2,如圖.
∴AE=AD+DE=2+2=4.
∵點(diǎn)D是邊BC的中點(diǎn),
∴BD=CD.
∵∠ADB=∠EDC,
∴△ABD≌△ECD.
∴∠AEC=∠BAD=65°.
∴∠ACE=180°-∠EAC-∠AEC=180°-50°-65°=65°.
∴∠ACE=∠AEC.
∴AC=AE=4.
∴AC的長為4.
小麗的方法:
過點(diǎn)C作CE∥AB,交AD的延長線于點(diǎn)E,如圖.
∴∠DCE =∠ABD,∠AEC=∠BAD=65°.
∴∠ACE=180°-∠EAC-∠AEC=180°-50°-65°=65°.
∴∠ACE=∠AEC.
∴AC=AE.
∵點(diǎn)D是邊BC的中點(diǎn),
∴BD=CD.
∴△ABD≌△ECD.
∴DE=AD=2.
∴AE=AD+DE=2+2=4.
∴AC=AE=4.
∴AC的長為4.
類比應(yīng)用: 過點(diǎn)D作DE∥AB,交AD于點(diǎn)E,如圖.
∴∠AED =∠DEC =∠BAC=90°,
∴∠ACD=180°-∠CAD-∠ADC=180°-45°-67.5°=67.5°.
∴∠ACD=∠ADC.
∴AC=AD.
∵點(diǎn)O是邊BD的中點(diǎn),
∴BO=OD.
∴△ABO≌△EDO.
∴AO=OE=2.
∴AE=DE=AB=4.
∴
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長.
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動時(shí),求能使△BCQ成為等腰三角形的運(yùn)動時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是矩形ABCD對角線的交點(diǎn),DE平分∠ADC交BC于點(diǎn)E,若∠BDE=15°,則∠COE=_______度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價(jià)為多少時(shí),每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點(diǎn),現(xiàn)有經(jīng)過點(diǎn)A的直線l:y=kx+b1與y軸交于點(diǎn)C,與拋物線的另個(gè)交點(diǎn)為D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)D在第二象限且滿足CD=5AC,求此時(shí)直線1的解析式;在此條件下,點(diǎn)E為直線1下方拋物線上的一點(diǎn),求△ACE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)如圖,設(shè)P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點(diǎn)Q在拋物線上,若以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請直接寫出點(diǎn)Q的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A,B,C分別與D,E,F(xiàn)對應(yīng),若以點(diǎn)A,D,E為頂點(diǎn)的三角形是等腰三角形,則m的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,分別以AC,BC為邊長,在三角形外作正方形ACFG和正方形BCED.若AC=4,AB=6,則EF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC的高BH,CM交于點(diǎn)P.
(1)求證:PB=PC.
(2)若PB=5,PH=3,求AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com