【題目】如圖,AB是的直徑,C是半圓AB上一點,連AC、OC,AD平分,交弧BC于D,交OC于E,連OD,CD,下列結論:
①弧弧CD;②;③;④當C是半圓的中點時,則.其中正確的結論是( )
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
根據圓周角定理得出弧CD=弧BD,推出CD=BD,求出∠DOB=2∠DAB,∠CAB=2∠DAB,根據平行線判定推出AC∥OD,根據三角形外角性質即可判斷③,連接BD、BE,求出BD=DE,求出BD=CD,即可得出答案.
∵AD平分∠CAB,
∴∠CAD=∠BAD,
∴弧BD=弧CD,∴①正確;
∵OA=OD,
∴∠ODA=∠OAD,
∴∠BOD=∠ODA+∠OAD=2∠DAB,
∵AD平分∠CAB,
∴∠CAB=2∠DAB,
∴∠DOB=∠CAB,
∴AC∥OD,∴②正確;
∵∠ACD=∠ACO+∠OCD,∠OED=∠OCD+∠CDA,
根據已知不能推出∠ACO=∠CDA,∴∠ACD=∠OED不對,∴③錯誤;
連接BD,BE,
∵C為弧AB中點,
∴∠CAB=45°,
∴∠DAB=22.5°,
∵AB是直徑,
∴∠ADB=90°,
∴∠DBA=67.5°,
∵C為弧AB中點,
∴OC⊥AB,
∵OA=OB,
∴AE=BE,
∴∠EBA=∠DAB=22.5°,
∴∠DBE=67.5°-22.5°=45°,
∴∠DEB=180°-90°-45°=45°=∠DBE,
∴DE=BD,
∵弧CD=弧BD,
∴CD=BD,
∴CD=DE,∴④正確;
故選B.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+8ax(a>0)與x軸交于O,A兩點,頂點為M,對稱軸與x軸交于H,與過O,A,M三點的⊙Q交于點B,⊙Q的半徑為5,點C從點B出發(fā),沿著圓周順時針向點M運動,射線MC與x軸交于D,與拋物線交于E,過點E作ME的垂線交拋物線的對稱軸于點F.
(1)求拋物線的解析式;
(2)當點C的運動路徑長為 時,求證:HD=2HA.
(3)在點C運動過程中.是否存在這樣的位置,使得以點M,E,F為頂點的三角形與△AHQ相似?若存在,求出此位置時點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=kx+b與反比例函數y=(x>0)的圖象分別交于點 A(m,3)和點B(6,n),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB,連接DO并延長交CB的延長線于點E,連接OC.
(1) 判斷直線CD與⊙O的位置關系,并說明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 為滿足社區(qū)居民健身的需要,市政府準備采購若干套健身器材免費提供給社區(qū),經考察,勁松公司有兩種型號的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價為萬元,經過連續(xù)兩年降價,2017年每套售價為 萬元,求每套型健身器年平均下降率 ;
(2)2017年市政府經過招標,決定年內采購并安裝勁松公司兩種型號的健身器材共套,采購專項費總計不超過萬元,采購合同規(guī)定:每套型健身器售價為萬元,每套型健身器售價我 萬元.
①型健身器最多可購買多少套?
②安裝完成后,若每套型和型健身器一年的養(yǎng)護費分別是購買價的 和 .市政府計劃支出 萬元進行養(yǎng)護.問該計劃支出能否滿足一年的養(yǎng)護需要?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線 y=ax+bx+c 的一部分,其對稱軸為直線 x=2,若其與 x 軸的一個交點為(5,0),則由圖象可知,不等式 ax+bx+c<0 的解集是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com