如圖,任意四邊形ABCD,對(duì)角線AC、BD交于O點(diǎn),過(guò)各頂點(diǎn)分別作對(duì)角線AC、BD的平行線,四條平行線圍成一個(gè)四邊形EFGH.試想當(dāng)四邊形ABCD的形狀發(fā)生改變時(shí),四邊形EFGH的形狀會(huì)有哪些變化?完成以下題目:
(1)當(dāng)ABCD為任意四邊形時(shí),EFGH為_(kāi)_______________;
當(dāng)ABCD為矩形時(shí),EFGH為_(kāi)_______________;
當(dāng)ABCD為菱形時(shí),EFGH為_(kāi)_______________;
當(dāng)ABCD為正方形時(shí),EFGH為_(kāi)_______________;
當(dāng)EFGH是矩形時(shí),ABCD為_(kāi)_______________;
當(dāng)EFGH是菱形時(shí),ABCD為_(kāi)_______________;
當(dāng)EFGH是正方形時(shí),ABCD為_(kāi)_______________.
(2)請(qǐng)選擇(1)中任意一個(gè)你所寫(xiě)的結(jié)論進(jìn)行證明.
(3)反之,當(dāng)用上述方法所圍成的平行四邊形EFGH分別是矩形、菱形時(shí),相應(yīng)的原四邊形ABCD必須滿足怎樣的條件?
(1)平行四邊形;菱形;矩形;正方形;對(duì)角線垂直的四邊形;對(duì)角線相等的四邊形;對(duì)角線相等且垂直的四邊形. (2)見(jiàn)解析(3)當(dāng)平行四邊形EFGH是矩形時(shí),四邊形ABCD必須滿足:對(duì)角線互相垂直.
當(dāng)平行四邊形EFGH是菱形時(shí),四邊形ABCD必須滿足:對(duì)角線相等
【解析】(1)平行四邊形;菱形;矩形;正方形;對(duì)角線垂直的四邊形;對(duì)角線相等的四邊形;對(duì)角線相等且垂直的四邊形.(2分)
(2)結(jié)合圖形,聯(lián)想特殊四邊形的特征及識(shí)別很容易發(fā)現(xiàn),其中的橋梁為AC、BD.
證明:①當(dāng)ABCD為任意四邊形時(shí),EFGH為平行四邊形
∵EH∥AC∥FG,EF∥BD∥GH,
∴四邊形EFGH為平行四邊形.
證②:若ABCD為矩形,則EFGH為菱形.
∵EH∥AC∥FG,EF∥BD∥GH,
∴四邊形EACH,ACGF,EFBD,BDHG,EFGH均為平行四邊形,
∴EH=AC=FG,EF=BD=GH,
∵四邊形ABCD為矩形,
∴AC=BD,
∴EH=AC=FG=EF=BD=GH,
∴四邊形EFGH為菱形.
③若ABCD為菱形,則EFGH為矩形,留給同學(xué)們自己證.(5分)
(3)當(dāng)平行四邊形EFGH是矩形時(shí),四邊形ABCD必須滿足:對(duì)角線互相垂直.
當(dāng)平行四邊形EFGH是菱形時(shí),四邊形ABCD必須滿足:對(duì)角線相等.(3分)
(1)根據(jù)圖形的特點(diǎn)及性質(zhì)可直接判斷.
(2)利用兩條直線都平行于第三條直線,則這兩條直線平行,再利用兩組對(duì)邊平行的四邊形是平行四邊形.
(3)和(2)中的問(wèn)題重合.主要是利用對(duì)角線相等的平行四邊形是矩形以及一組鄰邊相等的平行四邊形是菱形來(lái)進(jìn)行確定條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年江蘇省徐州市豐縣中學(xué)九年級(jí)(上)前三章月考試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com