當(dāng)x=11時(shí),求·÷的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:059
如圖,正方形ABCD的邊長為12,劃分成12×12小正方形格.將邊長為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相間地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.請(qǐng)你認(rèn)真觀察思考后回答下列問題:
(1)由于正方形紙片邊長n的取值不同,完成擺放時(shí)所使用正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?/P>
(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2.
①當(dāng)n=2時(shí),求S1∶S2的值;
②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044
如圖,正方形ABCD的邊長為12,劃分成12×12個(gè)小正方形格.將邊長為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相同地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.
請(qǐng)你認(rèn)真觀察思考后回答下列問題:
(1)由于正方形紙片邊長n的取值不同,完成擺放時(shí)所使正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?/P>
(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2.
①當(dāng)n=2時(shí),求S1∶S2的;
②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州安順卷)數(shù)學(xué) 題型:解答題
(11·西寧)(本小題滿分7分)給出三個(gè)整式a2,b2和2ab.
(1)當(dāng)a=3,b=4時(shí),求a2+b2+2ab的值;
(2)在上面的三個(gè)整式中任意選擇兩個(gè)整式進(jìn)行加法或減法運(yùn)算,使所得的多項(xiàng)式能夠因式分解.請(qǐng)寫也你所選的式子及因式分解的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6所示,正方形ABCD的邊長為12,劃分成12×12個(gè)小正方形格,將邊長為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式,黑白相間地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)個(gè)小正方形.如此擺放下去,直到紙片蓋住正方形ABCD的右下角為止.
請(qǐng)你認(rèn)真觀察思考后回答下列問題:
(1)由于正方形紙片邊長n的取值不同,完成擺放時(shí)所使用正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?/p>
紙片的邊長n | 2 | 3 | 4 | 5 | 6 |
使用的紙片張數(shù) |
(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2.
①當(dāng)n=2時(shí),求S1∶S2的值;
②是否存在使得S1=S2的n值?若存在,請(qǐng)求出來;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com