在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=AB=×40=20cm,
∴OM==15cm.
同理可求ON==7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

【答案】分析:在解題的過(guò)程中要環(huán)環(huán)相扣,不能漏掉必要的環(huán)節(jié).根據(jù)上述步驟有漏解的步驟就是MN的長(zhǎng)度.
解答:解:有漏解.
當(dāng)兩弦位于圓心的兩旁時(shí),如圖所示:
過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=AB=×40=20cm,
∴OM==15cm.
同理可求ON==7cm,
則MN=OM+ON=15+7=22(cm).
點(diǎn)評(píng):主要考查了垂徑定理的運(yùn)用.垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對(duì)的兩條。獯祟(lèi)題一般要把半徑、弦心距、弦的一半構(gòu)建在一個(gè)直角三角形里,運(yùn)用勾股定理求解.
分類(lèi)討論訓(xùn)練學(xué)生思維的嚴(yán)謹(jǐn)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、在直徑為50cm的圓O中,弦AB=40cm,弦CD=48cm,且AB平行CD,則AB與CD間的距離為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=
1
2
AB=
1
2
×40=20cm,
∴OM=
OB2-BM2
=
252-202
=15cm.
同理可求ON=
OC2-CN2
=
252-242
=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=數(shù)學(xué)公式AB=數(shù)學(xué)公式×40=20cm,
∴OM=數(shù)學(xué)公式=15cm.
同理可求ON=數(shù)學(xué)公式=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省金華市浦江縣治平中學(xué)九年級(jí)(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

在直徑為50cm的圓O中,弦AB=40cm,弦CD=48cm,且AB平行CD,則AB與CD間的距離為( )
A.8cm
B.12cm
C.22cm
D.8cm或22cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市古城中學(xué)九年級(jí)(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

在直徑為50cm的圓O中,弦AB=40cm,弦CD=48cm,且AB平行CD,則AB與CD間的距離為( )
A.8cm
B.12cm
C.22cm
D.8cm或22cm

查看答案和解析>>

同步練習(xí)冊(cè)答案