如圖所示,兩根旗桿間相距12m,某人從B點沿BA走向A,一定時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,求這個人運動了多長時間?

解:∵∠CMD=90°,
∴∠CMA+∠DMB=90度,
又∵∠CAM=90°
∴∠CMA+∠ACM=90°,
∴∠ACM=∠DMB,
又∵CM=MD,
∴Rt△ACM≌Rt△BMD,
∴AC=BM=3,
∴他到達點M時,運動時間為3÷1=3(s).
答:這人運動了3s.
分析:本題的基礎(chǔ)仍然是證明兩個三角形全等,根據(jù)∠CMD=90°,利用互余關(guān)系可以得出:∠AMC=∠DMB,證明三角形全等的另外兩個條件容易看出.利用全等的性質(zhì)可求得AC=BM=3,從而求得運動時間.
點評:本題考查了全等三角形的應(yīng)用;解答本題的關(guān)鍵是利用互余關(guān)系找三角形全等的條件,對應(yīng)角相等,并巧妙地借助兩個三角形全等,尋找所求線段與已知線段之間的等量關(guān)系.本題的關(guān)鍵是求得Rt△ACM≌Rt△BMD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖所示,兩根旗桿間相距12m,某人從B點沿BA走向A,一定時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,求這個人運動了多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,兩根旗桿間相距12m,某人從B點沿BA走向A,一定時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,求這個人運動了多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(實際應(yīng)用題)如圖所示,兩根旗桿間相距12m,某人從B點沿BA走向A,一定時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,求這個人運動了多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖所示,兩根旗桿間相距12m,某人從B點沿BA走向A,一定時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,求這個人運動了多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,兩根旗桿間相距12m,某人從B點沿BA走向A,一定時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,求這個人運動了多長時間?
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案