如圖,已知點F在AB上,且AF:BF=1:2,點D是BC延長線上一點,BC:CD=2:1,連接FD與AC交于點N,求FN:ND的值.

解:過點F作FE∥BD,交AC于點E,
=
∵AF:BF=1:2,
=
=,
即FE=BC,
∵BC:CD=2:1,
∴CD=BC,
∵FE∥BD,
===
即FN:ND=2:3.
證法二、連接CF、AD,
∵AF:BF=1:2,BC:CD=2:1,
==,
∵∠B=∠B,
∴△BCF∽△BDA,
==,∠BCF=∠BDA,
∴FC∥AD,
∴△CNF∽△AND,
==
分析:過點F作FE∥BD,交AC于點E,求出=,得出FE=BC,根據(jù)已知推出CD=BC,根據(jù)平行線分線段成比例定理推出=,代入化簡即可.
點評:本題考查了平行線分線段成比例定理的應用,注意:平行線分的線段對應成比例,此題具有一定的代表性,但是一定比較容易出錯的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2009•河西區(qū)二模)如圖①,已知點D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M為EC的中點.
(1)求證:△BMD為等腰直角三角形.
(思路點撥:考慮M為EC的中點的作用,可以延長DM交BC于N,構造△CMN≌△EMD,于是ED=CN=DA,即可以證明△BND也是等腰直角三角形,且BM是等腰三角形底邊的中線就可以了.)請你完成證明過程:
(2)將△ADE繞點A再逆時針旋轉90°時(如圖②所示位置),△BMD為等腰直角三角形的結論是否仍成立?若成立,請證明:若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•盧灣區(qū)一模)如圖,已知點F在AB上,且AF:BF=1:2,點D是BC延長線上一點,BC:CD=2:1,連接FD與AC交于點N,求FN:ND的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點D在AB上,點E在AC上,BE和CD相交于點O,AB=AC,∠B=∠C.
求證:△ABE≌△ACD.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-黃金分割點與平行線分線段成比例(帶解析) 題型:解答題

如圖,已知點F在AB上,且AF:BF=1:2,點D是BC延長線上一點,BC:CD=2:1,連接FD與AC交于點N,求FN:ND的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-黃金分割點與平行線分線段成比例(解析版) 題型:解答題

如圖,已知點F在AB上,且AF:BF=1:2,點D是BC延長線上一點,BC:CD=2:1,連接FD與AC交于點N,求FN:ND的值.

 

查看答案和解析>>

同步練習冊答案