如圖,邊長為3的正方形ABCD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)30°后得到正方形EFCG,EF交AD于點(diǎn)H,則四邊形DHFC的面積為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    9
  4. D.
    數(shù)學(xué)公式
B
分析:連結(jié)CH,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCF=30°,則∠FCD=60°,根據(jù)“HL”可判斷Rt△CFH≌Rt△CDH,則∠FCH=∠DCH=30°,在Rt△CFH中,根據(jù)含30度的直角三角形三邊的關(guān)系得到HF==,然后根據(jù)三角形面積公式計(jì)算出S△FCH=,最后利用四邊形DHFC的面積=2S△FCH即可.
解答:連結(jié)CH,如圖,
∵正方形ABCD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)30°后得到正方形EFCG,
∴∠BCF=30°,
∴∠FCD=60°,
∵在Rt△CFH和Rt△CDH中

∴Rt△CFH≌Rt△CDH(HL),
∴∠FCH=∠DCH,
∴∠FCH=30°,
在Rt△CFH中,CF=3,∠FCH=30°,
∴HF==,
∴S△FCH=×3×=,
∴四邊形DHFC的面積=2S△FCH=3
故選B.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了正方形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為
π2
的正△ABC,點(diǎn)A與原點(diǎn)O重合,若將該正三角形沿?cái)?shù)軸正方向翻滾一周,點(diǎn)A恰好與數(shù)軸上的點(diǎn)A′重合,則點(diǎn)A′對應(yīng)的實(shí)數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點(diǎn)P依次落在點(diǎn),,,,……的位置,則的橫坐標(biāo)=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年新人教版九年級(上)期中數(shù)學(xué)試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案