【題目】請閱讀下列材料:已知方程x2+x﹣3=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設所求方程的根為y,則y=2x.所以x=.
把x=代入已知方程,得()2+﹣3=0,化簡,得y2+2y﹣12=0.
故所求方程為y2+2y﹣12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的3倍.
科目:初中數學 來源: 題型:
【題目】如圖,中,,,BD、CD分別平分∠ABC,∠ACB,過點D作直線平行于BC,分別交AB、AC于E、F,則的周長為 ( )
A.12B.13C.14D.15
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調查,繪制出頻數分布表和頻數分布直方圖的一部分.
請根據圖表信息回答下列問題:
視力 | 頻數(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次調查的樣本為________,樣本容量為_______;
(2)在頻數分布表中,a=______,b=______,并將頻數分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據上述信息估計全區(qū)初中畢業(yè)生中視力正常的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是等邊三角形ABC內一點,且PA=4,PB=,PC=2,以下五個結論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點P到△ABC三邊的距離分別為PE,PF,PG,則有 其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數m,方程總有兩個不相等的實數根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=,cos37°=,tan37°=)
求把手端點A到BD的距離;
求CH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中有點B(-2,0)和y軸上的動點A(0,a),其中a>0,以點A為直角頂點在第二象限內作等腰直角三角形ABC,設點C的坐標為(c,d).
(1)當a=4時,則點C的坐標為( , );
(2)動點A在運動的過程中,試判斷c+d的值是否發(fā)生變化?若不變,請求出其值;若發(fā)生變化,請說明理由.
(3)當a=4時,在坐標平面內是否存在點P(不與點C重合),使△PAB與△ABC全等?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-3,2),B(-4,-3),C(-1,-1).
(1)①在圖中作出△ABC 關于y軸對稱的△A1B1C1并寫出點C1 的坐標(直接寫答案):C1______;②△A1B1C1 的面積為______.
(2)在y軸上畫出點 P,使 PB+PC 最。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com