【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng).
(1)AC= cm,BC= cm;
(2)當(dāng)t為何值時(shí),AP=PQ;
(3)當(dāng)t為何值時(shí),P與Q第一次相遇;
(4)當(dāng)t為何值時(shí),PQ=1cm.
【答案】(1)4,8;(2) ;(3)2;(4)t為或或時(shí),PQ=1cm.
【解析】
(1)根據(jù)AB=AC+BC=12cm,BC=2AC,即可求出AC=4cm,BC=8cm;
(2)用含t的代數(shù)式分別表示AP、PQ,根據(jù)AP=PQ列出方程,求解即可;
(3)當(dāng)P與Q第一次相遇時(shí),AP=AC+CQ,依此列出關(guān)于t的方程,求解即可;
(4)當(dāng)PQ=1cm時(shí),從點(diǎn)P的運(yùn)動(dòng)方向可分兩種情況進(jìn)行討論:(Ⅰ)當(dāng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng)時(shí),又分P追上Q前與P追上Q后兩種情況;(Ⅱ)當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回時(shí),由于當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng),所以只有點(diǎn)P與Q相遇前一種情況.
(1)∵AB=AC+BC=12cm,BC=2AC,
∴AC+2AC=12,
∴AC=4cm,BC=8cm.
(2)當(dāng)AP=PQ時(shí),AP=3t,PQ=AC+CQ-AP=4+t-3t,
即3t=4+t-3t,解得t=.
所以當(dāng)t=時(shí),AP=PQ;
(3)當(dāng)P與Q第一次相遇時(shí),AP=AC+CQ,
即3t=4+t,解得t=2.
所以當(dāng)t=2時(shí),P與Q第一次相遇;
(4)(Ⅰ)當(dāng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng)時(shí),
P追上Q前,由PQ=AC+CQ-AP=1,可得4+t-3t=1,解得t=;
P追上Q后,由PQ=AP-(AC+CQ)=1,可得3t-(4+t)=1,解得t=;
(Ⅱ)當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回時(shí),點(diǎn)P與Q相遇前.
∵AB+BP=3t,
∴BP=3t-12.
∵PQ=BC-BP-CQ=1,
∴8-(3t-12)-t=1,
解得t=.
綜上所述,當(dāng)t為或或時(shí),PQ=1cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)的正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺(tái)階AC的坡度為1: (即AB:BC=1: ),且B、C、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(側(cè)傾器的高度忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于t的不等式組 ,恰有三個(gè)整數(shù)解,則關(guān)于x的一次函數(shù) 的圖象與反比例函數(shù) 的圖象的公共點(diǎn)的個(gè)數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中BC=8,CD=6,將△ABE沿BE折疊,使點(diǎn)A恰好落在對(duì)角線BD上F處,則DE的長(zhǎng)是( )
A.3
B.
C.5
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“雙十二”期間,A,B兩個(gè)超市開(kāi)展促銷(xiāo)活動(dòng),活動(dòng)方式如下:
A超市:購(gòu)物金額打9折后,若超過(guò)2000元再優(yōu)惠300元;
B超市:購(gòu)物金額打8折.
某學(xué)校計(jì)劃購(gòu)買(mǎi)某品牌的籃球做獎(jiǎng)品,該品牌的籃球在A,B兩個(gè)超市的標(biāo)價(jià)相同.根據(jù)商場(chǎng)的活動(dòng)方式:
(1)若一次性付款4200元購(gòu)買(mǎi)這種籃球,則在B商場(chǎng)購(gòu)買(mǎi)的數(shù)量比在A商場(chǎng)購(gòu)買(mǎi)的數(shù)量多5個(gè).請(qǐng)求出這種籃球的標(biāo)價(jià);
(2)學(xué)校計(jì)劃購(gòu)買(mǎi)100個(gè)籃球,請(qǐng)你設(shè)計(jì)一個(gè)購(gòu)買(mǎi)方案,使所需的費(fèi)用最少.(直接寫(xiě)出方案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為 .
(2)用樹(shù)狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無(wú)理數(shù),那么a=0且b=0.
運(yùn)用上述知識(shí),解決下列問(wèn)題:
(1)如果(a-2)+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了綠化環(huán)境,育英中學(xué)八年級(jí)三班同學(xué)都積極參加植樹(shù)活動(dòng),今年植樹(shù)節(jié)時(shí),該班同學(xué)植樹(shù)情況的部分?jǐn)?shù)據(jù)如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖信息,回答下列問(wèn)題:
(1)八年級(jí)三班共有多少名同學(xué)?
(2)條形統(tǒng)計(jì)圖中,m= ,n= .
(3)扇形統(tǒng)計(jì)圖中,試計(jì)算植樹(shù)2棵的人數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)有場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.
(1)已知甲隊(duì)在初賽階段的積分為分,求甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);
(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com