【題目】下列說法中,正確的是( 。
A.直線外一點(diǎn)到這條直線的垂線段,叫做點(diǎn)到直線的距離;
B.已知線段,軸,若點(diǎn)的坐標(biāo)為(-1,2),則點(diǎn)的坐標(biāo)為(-1,-2)或(-1,6);
C.若與互為相反數(shù),則;
D.已知關(guān)于的不等式的解集是,則的取值范圍為.
【答案】B
【解析】
分別根據(jù)點(diǎn)到直線的距離,平面直角坐標(biāo)系中點(diǎn)的特點(diǎn),立方根的性質(zhì)及代數(shù)式的求值,一元一次不等式的解集可判斷.
解:A、點(diǎn)到直線的距離是直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,它是一個(gè)數(shù)量,而不是一個(gè)圖形,故A錯(cuò)誤;
B、因?yàn)?/span>軸,所以上所有點(diǎn)的橫坐標(biāo)相同,又因?yàn)?/span>,點(diǎn)的坐標(biāo)為(-1,2),所以點(diǎn)的坐標(biāo)為(-1,-2)或(-1,6);故B正確;
C、若與互為相反數(shù),則與互為相反數(shù),
∴,
∴,
∴,故C錯(cuò)誤;
D、∵關(guān)于的不等式的解集是,
則,故,故D錯(cuò)誤;
故答案為:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上, 直線MN: y=x-8沿x軸的負(fù)方向以每秒2個(gè)單位的長(zhǎng)度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長(zhǎng)度為m,平移時(shí)間為t, m與t的函數(shù)圖象如圖2所示.
(1)若AB=6
①點(diǎn)A的坐標(biāo)為_____________,矩形ABCD的面積為____________.
②求a, b的值;
(2)若AB=4,在平移過程中,求直線MN掃過矩形ABCD的面積 S與 t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點(diǎn)E是邊CD上的動(dòng)點(diǎn)(點(diǎn)E不與端點(diǎn)C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點(diǎn)F,H,G.當(dāng)=時(shí),DE的長(zhǎng)為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=6與雙曲線y=(k≠0,且>0)交點(diǎn)A,點(diǎn)A的橫坐標(biāo)為2.
(1)求點(diǎn)A的坐標(biāo)及雙曲線的解析式;
(2)點(diǎn)B是雙曲線上的點(diǎn),且點(diǎn)B的縱坐標(biāo)是6,連接OB,AB.求三角形△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD內(nèi)部有兩個(gè)大小相同的長(zhǎng)方形AEFG、HMCN,HM與EF相交于點(diǎn)P,HN與GF相交于點(diǎn)Q,AG=CM=x,AE=CN=y.
(1)用含有x、y的代數(shù)式表示長(zhǎng)方形AEFG與長(zhǎng)方形HMCN重疊部分的面積S四邊形HPFQ,并求出x應(yīng)滿足的條件;
(2)當(dāng)AG=AE,EF=2PE時(shí),
①AG的長(zhǎng)為_______;
②四邊形AEFG旋轉(zhuǎn)后能與四邊形HMCN重合,請(qǐng)指出該圖形所在平面內(nèi)能夠作為旋轉(zhuǎn)中心的所有點(diǎn),并分別說明如何旋轉(zhuǎn)的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)長(zhǎng)為8分米,寬為5分米,高為7分米的長(zhǎng)方體上,截去一個(gè)長(zhǎng)為6分米,寬為5分米,深為2分米的長(zhǎng)方體后,得到一個(gè)如圖所示的幾何體.一只螞蟻要從該幾何體的頂點(diǎn)A處,沿著幾何體的表面到幾何體上和A相對(duì)的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長(zhǎng)是 分米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OD是∠AOC的平分線,OE是∠BOC的平分線.
(1)圖中與∠AOD互余的角是 ,與∠COE互補(bǔ)的角是 ;(把符合條件的角都寫出來)
(2)求∠DOE的度數(shù);
(3)如果∠BOF=51°34',∠COE=38°43',請(qǐng)畫出射線OF,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:四邊形ABDC中,CD=BD,E為AB上一點(diǎn),連接DE,且∠CDE=∠B.若∠CAD=∠BAD=30°,AC=5,AB=3,則EB=______________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在四邊形ABCD中,∠ABC=∠ADC=90,M、N分別是CD和BC上的點(diǎn).
求作:點(diǎn)M、N,使△AMN的周長(zhǎng)最小.
作法:如圖,
(1)延長(zhǎng)AD,在AD的延長(zhǎng)線上截取DA=DA;
(2)延長(zhǎng)AB,在AB的延長(zhǎng)線上截取B A″=BA;
(3)連接A′A″,分別交CD、BC于點(diǎn)M、N.則點(diǎn)M、N即為所求作的點(diǎn).
請(qǐng)回答:這種作法的依據(jù)是_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com