(2012•衢州)如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線(xiàn)交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.
(1)求證:AC是⊙O的切線(xiàn);
(2)已知AB=10,BC=6,求⊙O的半徑r.
分析:(1)連接OD.欲證AC是⊙O的切線(xiàn),只需證明AC⊥OD即可;
(2)利用平行線(xiàn)截線(xiàn)段成比例推知
OD
BC
=
AO
AB
;然后將圖中線(xiàn)段間的和差關(guān)系代入該比例式,通過(guò)解方程即可求得r的值,即⊙O的半徑r的值.
解答:(1)證明:連接OD.
∵OB=OD,
∴∠OBD=∠ODB(等角對(duì)等邊);
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ODB=∠DBC(等量代換),
∴OD∥BC(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行);
又∵∠C=90°(已知),
∴∠ADO=90°(兩直線(xiàn)平行,同位角相等),
∴AC⊥OD,即AC是⊙O的切線(xiàn);

(2)解:由(1)知,OD∥BC,
OD
BC
=
AO
AB
(平行線(xiàn)截線(xiàn)段成比例),
r
6
=
10-r
10

解得r=
15
4
,即⊙O的半徑r為
15
4
點(diǎn)評(píng):本題綜合考查了切線(xiàn)的判定、平行線(xiàn)截線(xiàn)段成比例等知識(shí)點(diǎn).要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衢州)如圖,已知函數(shù)y=2x和函數(shù)y=
kx
的圖象交于A(yíng)、B兩點(diǎn),過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,若△AOE的面積為4,P是坐標(biāo)平面上的點(diǎn),且以點(diǎn)B、O、E、P為頂點(diǎn)的四邊形是平行四邊形,則滿(mǎn)足條件的P點(diǎn)坐標(biāo)是
P1(0,-4)P2(-4,-4)P3(4,4)
P1(0,-4)P2(-4,-4)P3(4,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衢州)如圖,在平行四邊形ABCD中,E、F是對(duì)角線(xiàn)BD上的兩點(diǎn),且BE=DF,連接AE、CF.請(qǐng)你猜想:AE與CF有怎樣的數(shù)量關(guān)系?并對(duì)你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衢州)如圖,點(diǎn)A、B、C在⊙O上,∠ACB=30°,則sin∠AOB的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衢州)如圖,平行四邊形ABCD中,E是CD的延長(zhǎng)線(xiàn)上一點(diǎn),BE與AD交于點(diǎn)F,CD=2DE.若△DEF的面積為a,則平行四邊形ABCD的面積為
12a
12a
(用a的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案