如圖,⊙O的直徑AB=10cm,弦CD⊥AB,垂足為P.若OP:OB=3:5,則CD的長為( )

A.6cm
B.4cm
C.8cm
D.10cm
【答案】分析:根據(jù)⊙O的直徑可得出半徑OB的長,也就求出OP的長;連接OC,在Rt△OCP中,運用勾股定理可求出CP的長,進(jìn)而可依據(jù)垂徑定理求得CD的長.
解答:解:連接OC;
∵AB=10cm,∴OB=5cm;
∵OP:OB=3:5,∴OP=3cm;
Rt△OCP中,OC=OB=5cm,OP=3cm;
由勾股定理,得:CP==4cm;
所以CD=2PC=8cm,
故選C.
點評:此題主要考查的是勾股定理及垂徑定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習(xí)冊答案