某商廈將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)50x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出yx之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
(1) (2)故應(yīng)將200元 (3)當(dāng)時(shí),y取最大值5000元 

試題分析:(1)假設(shè)每臺(tái)冰箱降價(jià)50x元,每臺(tái)冰箱的售價(jià)為2400-50x,調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái),則每天能售出冰箱的臺(tái)數(shù)=8+4x;商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y=2400-50x-2000)(8+4x)=
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,則=4800,整理得,解得;又要使百姓得到實(shí)惠,所以每臺(tái)冰箱應(yīng)降價(jià)==200
(3)由(1)知商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元與x之間的函數(shù)表達(dá)式==
=
當(dāng)x-3=0,即x=3時(shí),y取得最大值,最大值為5000,所以每臺(tái)冰箱應(yīng)降價(jià)=150時(shí)商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高
點(diǎn)評(píng):本題考查一元二次方程,二次函數(shù),要求考生掌握一元二次方程的解法,掌握用配方法求二次函數(shù)的最值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,等邊中,BC∥軸,且BC=,頂點(diǎn)A在拋物線上運(yùn)動(dòng).

(1)當(dāng)頂點(diǎn)A運(yùn)動(dòng)至與原點(diǎn)重合時(shí),頂點(diǎn)C是否在該拋物線上?
(2)在運(yùn)動(dòng)過(guò)程中有可能被軸分成兩部分,當(dāng)上下兩部分的面積之比為1:8(即)時(shí),求頂點(diǎn)A的坐標(biāo);
(3)在運(yùn)動(dòng)過(guò)程中,當(dāng)頂點(diǎn)B落在坐標(biāo)軸上時(shí),直接寫(xiě)出頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷(xiāo)售,那么每天可獲取利潤(rùn)750元.
【利潤(rùn)=(銷(xiāo)售價(jià)-進(jìn)價(jià))銷(xiāo)售量】
(1)請(qǐng)根據(jù)他們的對(duì)話填寫(xiě)下表:
銷(xiāo)售單價(jià)x(元/kg)
10
11
13
銷(xiāo)售量y(kg)
 
 
 
(2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷(xiāo)售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的對(duì)稱(chēng)軸是
A.直線 x=2      B. 直線x=" -2"       C.直線x= -3      D.直線x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-4a經(jīng)過(guò)A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.

(1)求拋物線的解析式;
(2)已知點(diǎn)D(m,m+1)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱(chēng)的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連接BD,點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),直角梯形AOCD的頂點(diǎn)A的坐標(biāo)為
(0,),點(diǎn)D的坐標(biāo)為(1,),點(diǎn)C軸的正半軸上,過(guò)點(diǎn)O且以點(diǎn)D為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)C,點(diǎn)PCD的中點(diǎn).

(1)求拋物線的解析式及點(diǎn)P的坐標(biāo);
(2) 在軸右側(cè)的拋物線上是否存在點(diǎn)Q,使以Q為圓心的圓同時(shí)與軸、直線OP相切.若存在,請(qǐng)求出滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)M為線段OP上一動(dòng)點(diǎn)(不與O點(diǎn)重合),過(guò)點(diǎn)O、M、D的圓與軸的正半軸交于點(diǎn)N.求證:OM+ON為定值.
(4)在軸上找一點(diǎn)H,使∠PHD最大.試求出點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y = -(x+1)2+3的頂點(diǎn)坐標(biāo)(   )
A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某汽車(chē)銷(xiāo)售公司10月份銷(xiāo)售某廠家的汽車(chē).在一定范圍內(nèi),每部汽車(chē)的進(jìn)價(jià)與銷(xiāo)售量有如下關(guān)系:若當(dāng)月僅售出1部汽車(chē),則該部汽車(chē)的進(jìn)價(jià)為30萬(wàn)元;每多售出1部,所有售出的汽車(chē)的進(jìn)價(jià)均降低0.2萬(wàn)元/部.
(1)若該公司當(dāng)月售出2部汽車(chē),則每部汽車(chē)的進(jìn)價(jià)為   萬(wàn)元;
(2)如果汽車(chē)的售價(jià)為31萬(wàn)元/部.
①寫(xiě)出公司當(dāng)月盈利y(萬(wàn)元)與汽車(chē)銷(xiāo)售量x(部)之間的函數(shù)關(guān)系式;
②若該公司當(dāng)月盈利28萬(wàn)元,求售出汽車(chē)的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①是矩形包書(shū)紙的示意圖,虛線是折痕,四個(gè)角均為大小相同的正方形,正方形的邊長(zhǎng)為折疊進(jìn)去的寬度.

(1)現(xiàn)有一本書(shū)長(zhǎng)為25cm,寬為20cm,厚度是2cm,如果按照如圖①的包書(shū)方式,并且折疊進(jìn)去的寬度是3cm,則需要書(shū)包紙的長(zhǎng)和寬分別為多少?(請(qǐng)直接寫(xiě)出答案).
(2)已知數(shù)學(xué)課本長(zhǎng)為26 cm,寬為18.5cm,厚為1cm,小明用一張面積為1260cm2的矩形書(shū)包紙按如圖①包好了這本書(shū),求折進(jìn)去的寬度.
(3)如圖②,矩形ABCD是一張一個(gè)角(△AEF)被污損的書(shū)包紙,已知AB=30,BC=50,AE=12,AF=16,要使用沒(méi)有污損的部分包一本長(zhǎng)為19,寬為16,厚為6的字典,小紅認(rèn)為只要按如圖②的剪裁方式剪出一張面積最大的矩形PGCH就能包好這本字典. 設(shè)PM=x,矩形PGCH的面積為y,當(dāng)x取何值時(shí)y最大?并由此判斷小紅的想法是否可行.

查看答案和解析>>

同步練習(xí)冊(cè)答案