【題目】如圖,的三個(gè)頂點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格中,已知,,.

(1)畫出關(guān)于軸對(duì)稱的(其中,,分別是,的對(duì)應(yīng)點(diǎn),不寫畫法);

(2)分別寫出,三點(diǎn)的坐標(biāo).

(3)請(qǐng)寫出所有以為邊且與全等的三角形的第三個(gè)頂點(diǎn)(不與重合)的坐標(biāo)_____.

【答案】1)見解析;(2A′1-1),B′-4,-1),C′-3,1);(3)(01)或(0,-3)或(3,-3

【解析】

1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)AB、C關(guān)于y軸的對(duì)稱點(diǎn)A′、B′、C′的位置,然后順次連接即可;

2)根據(jù)平面直角坐標(biāo)系寫出各點(diǎn)的坐標(biāo)即可;

3)利用軸對(duì)稱性確定出另一個(gè)點(diǎn),然后根據(jù)平面直角坐標(biāo)系寫出坐標(biāo)即可.

解:(1△A′B′C′如圖所示;

2A′1,-1),B′-4,-1),C′-31);

3)如圖,第三個(gè)點(diǎn)的坐標(biāo)為(0,1)或(0-3)或(3,-3).

在△ABC和△BAE1中,

BC=AE1=

AC=BE1=,

AB=BA,

∴△ABC≌△BAE1

同理可證:△ABC≌△BAE2,△ABC≌△ABE3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解與應(yīng)用:對(duì)式子x2+2x3變形如下:x2+2x3=x2+2x+113=(x2+2x+1)4=(x+1)24.像這種變形抓住了完全平方公式的特點(diǎn),先在原式中添加一項(xiàng),使其中的三項(xiàng)成為完全平方式,再減去添加的這項(xiàng),我們把這種恒等變形叫配方. 配方法是一種用來(lái)把二次多項(xiàng)式化為一個(gè)一次多項(xiàng)式的平方與一個(gè)常數(shù)的和的方法,它的應(yīng)用十分廣泛.請(qǐng)你嘗試解決下列問題:

(1)對(duì)式子x22x+2020進(jìn)行配方;

(2)已知2y2x28x=y+10,求y的最小值;

(3)如圖,在足夠大的空地上有一段長(zhǎng)為a(a≥250)米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)長(zhǎng)方形菜園ABCD,其中 ADMN,已知長(zhǎng)方形菜園的一邊靠墻,另三邊一共用了100米木欄. 求長(zhǎng)方形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A0,b),點(diǎn)Ba0),點(diǎn)D(-2,0),其中a、b滿足, DEx軸,且∠BED=∠ABO,直線AEx軸于點(diǎn)C.

⑴ 分別求出點(diǎn)A、B的坐標(biāo);

⑵ 求證:△AOB≌△BDE,并求出點(diǎn)E的坐標(biāo)

⑶ 若以AB為腰在第一象限內(nèi)構(gòu)造等腰直角△ABF,直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)PQ的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)PPEAOAB于點(diǎn)E

1)求直線AB的解析式;

2)設(shè)PEQ的面積為S,求St時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;

3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、EH為頂點(diǎn)的四邊形是菱形,直接寫出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2﹣4ac0 ②a0 ③b0 ④c0 ⑤9a+3b+c0,則其中結(jié)論正確的個(gè)數(shù)是(  )

A、2個(gè)B、3個(gè)

C、4個(gè)D5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,已知AB=AC,DAC上的一點(diǎn),CD=9,BC=15,BD=12.

(1)證明:BCD是直角三角形.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀探索

問題背景:著名數(shù)學(xué)家華羅庚提出把數(shù)形關(guān)系(勾股定理)帶到其他星球,作為地球人與其他星球進(jìn)行第一次談話的語(yǔ)言.20028月在北京召開的國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖注》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形(如圖1所示).勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積進(jìn)行了證明.

趙爽證明方法如下:

a、b為直角邊(b>a),以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于,把這四個(gè)直角三角形拼成如圖1所示形狀.

RtDAERtABF

∴∠EDA=FAB

∵∠EAD+EDA=90°

∴∠FAB+EAD=90°

∴四邊形ABCD是一個(gè)邊長(zhǎng)為c的正方形,它的面積等于

EF=FG=GH=HE=b-a

HEF=90°

∴四邊形EFGH是一個(gè)邊長(zhǎng)為b-a的正方形,它的面積等于

從而證明了勾股定理.

思維拓展:

1、如果大正方形的面積為13,小正方形的面積為1,直角三角形的較短直角邊長(zhǎng)為a,較長(zhǎng)直角邊長(zhǎng)為b,那么的值為 .

2、美國(guó)第二十屆總統(tǒng)加菲爾德也曾經(jīng)給出了勾股定理的一種證明方法,如圖2所示,

他用兩個(gè)全等的直角三角形和一個(gè)等腰直角三角形拼出了一個(gè)直角梯形,請(qǐng)你利用此圖形驗(yàn)證勾股定理.

證明:∵直角梯形ABCD的面積可以用兩種方法表示:

第一種方法表示為:

第二種方法表示為:

=

探索創(chuàng)新:

用紙做成四個(gè)全等的直角三角形,兩直角邊的長(zhǎng)分別為ab,斜邊長(zhǎng)為c,請(qǐng)你開動(dòng)腦筋,將它們拼成一個(gè)能證明勾股定理的圖形(不同于上面圖1和圖2.請(qǐng)畫出你拼成的圖形,并用你畫的圖形證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 為更新果樹品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買B種苗所需費(fèi)用y(元)與購(gòu)買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

1)求yx的函數(shù)關(guān)系式;

2)若在購(gòu)買計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】天貓網(wǎng)的新時(shí)代書店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種圖書,已知甲種圖書進(jìn)價(jià)比乙種圖書貴4元,用3000元購(gòu)進(jìn)甲種圖書的數(shù)量與用2400元購(gòu)進(jìn)乙種圖書的數(shù)量相同.

(1)甲、乙兩種圖書的單價(jià)分別為多少元?

(2)若甲種圖書每本售價(jià)30元,乙種圖書每本售價(jià)25元,書店欲同時(shí)購(gòu)進(jìn)兩種圖書共100本,請(qǐng)寫出所獲利潤(rùn)y(單位:元)關(guān)于甲種圖書x(單位:本)的函數(shù)解析式;

(3)在(2)的條件下,若書店計(jì)劃用不超過(guò)1800元購(gòu)進(jìn)兩種圖書,且甲種圖書至少購(gòu)進(jìn)40本,并將所購(gòu)圖書全部銷售,共有多少種購(gòu)進(jìn)方案?哪一種方案利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案