【題目】已知函數(shù)圖象如圖所示,根據(jù)圖象可得:

(1)拋物線頂點坐標(biāo)_____

(2)對稱軸為_____

(3)當(dāng)_____時,y隨著x得增大而增大

(4)當(dāng)_____時,y0

【答案】(﹣3,2 x=﹣3 x<﹣3 5x<﹣1

【解析】

1)根據(jù)拋物線的對稱性即可求出頂點坐標(biāo)的橫坐標(biāo);

2)由拋物線的頂點坐標(biāo)的橫坐標(biāo)即可得到對稱軸;

3)觀察圖像即可;

4)觀察圖像即可;

解:(1)如圖所示,拋物線的對稱軸方程是:=﹣3

則拋物線的頂點坐標(biāo)是(﹣3,2).

故答案是:(﹣3,2).

2)由(1)知,拋物線的對稱軸為直線x=﹣3

故答案是:x=﹣3;

3)如圖所示,當(dāng)x<﹣3時,y隨著x得增大而增大.

故答案是:x<﹣3

4)如圖所示,當(dāng)﹣5x<﹣1時,y0

故答案是:﹣5x<﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是等腰RtABC外一點,把線段BP繞點B順時針旋轉(zhuǎn)90°得到線段BP',已知∠AP'B135°,P'AP'C13,則P'APB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為24m的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借用一段墻體(墻體的最大可用長度a10m)

(1)如果所圍成的花圃的面積為45m2試求寬AB的長;

(2)按題目的設(shè)計要求,能圍成面積比45m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶期間某旅游點一家商鋪銷售一批成本為每件50元的商品,規(guī)定銷售單價不低于成本價,又不高于每件70,銷售量y()與銷售單價x()的關(guān)系可以近似的看作一次函數(shù)(如圖).

(1)請直接寫出y關(guān)于x之間的關(guān)系式

(2)設(shè)該商鋪銷售這批商品獲得的總利潤(總利潤=總銷售額一總成本)P元,求Px之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時,P的值最大?最大值是多少?

(3)若該商鋪要保證銷售這批商品的利潤不能低于400,求銷售單價x()的取值范圍是 .(可借助二次函數(shù)的圖象直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時間t1(單位s)滿足二次函數(shù)關(guān)系,并測得相關(guān)數(shù)據(jù):

滑行時間t1/s

0

1

2

3

4

滑行距離y1/s

0

4.5

14

28.5

48

滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.

(1)求y1和t1滿足的二次函數(shù)解析式;

(2)求滑坡AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+ca≠0)的對稱軸為x=﹣1,且拋物線經(jīng)過 A10),C03)兩點,與x軸交于點B

1)求拋物線的解析式;

2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求此時點M的坐標(biāo);

3)設(shè)點P為拋物線對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2x+cx軸交于點A(﹣1,0)和點B,與y軸相交于點C0,3),拋物線的對稱軸為直線

1)求這條拋物線的關(guān)系式,并寫出其對稱軸和頂點M的坐標(biāo);

2)如果直線y=kx+b經(jīng)過C、M兩點,且與x軸交于點D,點C關(guān)于直線的對稱點為N,試證明四邊形CDAN是平行四邊形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點DE,作直線DEAB于點F,交AC于點G,連接CF,以點C為圓心,以CF的長為半徑畫弧,交AC于點H.若∠A30°,BC2,則AH的長是(  )

A. B. 2C. +1D. 22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)寫出一個滿足條件的m的值,并求此時方程的根.

查看答案和解析>>

同步練習(xí)冊答案