精英家教網如圖,已知⊙O1與⊙O2外切,⊙O2與⊙O3外切,三個圓都與直線a、直線b相切,其中A1、A2、A3分別為切點⊙O1的半徑為3,⊙O2的半徑為4,則⊙O3的半徑為
 
分析:圓與圓相切,連心線必過切點,直線與圓相切,直線必垂直于經過切點的半徑,結合圖形的對稱性,用相似三角形的知識解答本題.
解答:解:如圖,連接O1O3,必過圓心O2,連接O1A1,O2A2,O3A3,
作O1C⊥O3A3,垂足為C,交O2A2于D,設⊙O3的半徑為r,易證△O1O2D∽△O1O3C,
所以,
O1O2
O1O3
=
O2D
O3C
,即
4+3
3+8+r
=
4-3
r-3

解得r=
16
3
,即⊙O3的半徑是
16
3

精英家教網
點評:充分運用直線與圓、圓與圓相切,作輔助線,把問題轉化為證明相似三角形,利用相似比求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,已知⊙O1與⊙O2相交于A、B兩點,連心線O1O2交⊙O1于C、D兩點,直線CA交⊙O2于點P,直線PD交⊙O1于點Q,且CP∥QB,求證:AC=AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1與⊙O2是等圓,直線CF順次交兩圓于C、D、E、F,且CF交O1O2于點M.需要添加上一個條件,(只填寫一個條件,不添加輔精英家教網助線或另添字母),則M是線段O1O2的中點,并說明理由.(說明理由時可添加輔助線或字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1與⊙O2相交于A、B兩點,過A作⊙O1的切線交⊙O2于E,連接EB并延長交⊙O1于C,直線CA交⊙O2于點D.
(1)當A、D不重合時,求證:AE=DE
(2)當D與A重合時,且BC=2,CE=8,求⊙O1的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1與⊙O2相交于點A、B,AB=8,O1O2=1,⊙O1的半徑長為5,那么⊙O2的半徑長為
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經過⊙O1的圓心O1,且兩圓相交于A,B兩點,C為⊙O2上的點,連接AC交⊙O1于D點,再連接BC,BD,AO1,AO2,O1O2,有如下四個結論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結論的序號為
 

查看答案和解析>>

同步練習冊答案