【題目】已知AB為⊙O的直徑,點C為的中點,BD為弦,CE⊥BD于點E,
(1)如圖1,求證:CE=DE;
(2)如圖2,連接OE,求∠OEB的度數;
(3)如圖3,在(2)條件下,延長CE,交直徑AB于點F,延長EO,交⊙O于點G,連接BG,CE=2,EF=3,求△EBG的面積.
【答案】(1)證明見解析;(2)證明見解析;(3)△EBG的面積為6+3 .
【解析】(1)如圖1中,連接CD、OC. 只要證明∠CDE=∠COB=45°即可.
(2)如圖2中,連接OD、OC,只要證明△OED≌△OEC,推出∠OED=∠CEO=135°,即可解決問題.
(3)如圖3中,過0作OM⊥BD于M,BN⊥EG于N,則∠EMO=90°,連接OC,設EM=x,則BM=DM=2-x,由EF∥OM,得=列出方程即可解決.
解:(1)證明:如圖1中,連接CD、OC.
∵點C是AB 中點,∴AC=BC,∴∠AOC=∠BOC,
∵∠AOC+∠BOC=180°,∴∠AOC=∠BOC=90°,∴∠D=45°,
∵CE⊥BD,∴∠CED=90°,∴∠D=∠DCE=45°,∴CE=DE.
(2)證明:如圖2中,連接OD,OC
在△OED和△OEC中,
OC=OD,CE=DE,OE=OE,
∴△OED≌△OEC,
∵∠CED=90°,∴∠OED=∠CEO=135°,∴∠OEB=45°.
(3)解:如圖3中,過O作OM⊥BD于M,BN⊥EG于N,則∠EMO=90°,連接OC.
∵CE=2,∴DE=2,設EM=x,則BM=DM=2+x,∴BE=2x+2,∵∠OEB=45°,則BM=DM=2+x,∴OM=x,
∵∠OEB=45°,∴∠CEB=∠EMO,∴EF∥OM.
∴ ,即,解得x=2或(舍去),
∴OE=2 ,BM=4,OM=2,BN=3 ,∴OB=2 ∴EG=OE+OG=2 +2 ,
∴S△EBG=EGBN=(2 +2 )×3 =6+3 .
“點睛”本題考查圓的綜合題、全等三角形的判定和性質、平行線的性質、圓的有關知識,解題的關鍵是靈活應用這些知識解決問題,學會添加常用輔助線,學會用方程的思想思考問題,屬于中考壓軸題.
科目:初中數學 來源: 題型:
【題目】有一種長方體集裝箱,其內空長為5米,集裝箱截面的高4.5米,寬3.4米,用這樣的集裝箱運長為5米,橫截面的外圓直徑為0.8米的圓柱形鋼管,為了盡可能多運,排的方案是:圓柱長5米放置于集裝箱內空長,圓柱兩底面放置于集裝箱截面,截面的排法是:
A. 橫排,每行分別為4、3、4、3、4、3
B. 橫排,每行分別為4、4、4、4、4、3
C. 豎排,每列分別為5、4、5、4、5
D. 豎排,每列分別為5、5、5、5、4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,∠A=36°.
(1)利用尺規(guī)作∠B的平分線BD,交AC于點D;(保留作圖痕跡,不寫作法)
(2)判斷△BCD是否為等腰三角形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示:
(1)∵________=__________(已知)
∴AB∥CD(同位角相等,兩條直線平行)
(2)∵_________=__________(已知)
∴AB∥CD(內位角相等,兩條直線平行)
(3)∵_________+_________=180(已知)
∴AB∥CD(同旁內角互補,兩條直線平行)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y與x﹣2成正比例,當x=3時,y=2.
(1)求y與x之間的函數關系式;
(2)當﹣2<x<3時,求y的范圍.
(3)證明:△ABC是直角三角形.
(4)請求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了倡導“節(jié)約用水,從我做起”,黃岡市政府決定對市直機關500戶家庭的用水情況作一次調查,市政府調查小組隨機抽查了其中100戶家庭一年的月平均用水量(單位:噸).并將調查結果制成了如圖所示的條形統(tǒng)計圖.
(1)請將條形統(tǒng)計圖補充完整;
(2)求這100個樣本數據的平均數,眾數和中位數;
(3)根據樣本數據,估計黃岡市直機關500戶家庭中月平均用水量不超過12噸的約有多少戶?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在紙面上有一數軸(如圖),折疊紙面.
(1)若1表示的點與-1表示的點重合,則-7表示的點與數__________表示的點重合;
(2)若-1表示的點與8表示的點重合,回答以下問題:
① 12表示的點與數___________表示的點重合;
② 若數軸上A、B兩點之間的距離為2017(A在B的左側),且A、B兩點經折疊后重合,求A、B兩點表示的數是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com