定義:a是不為1的有理數(shù),把數(shù)學(xué)公式叫做a的差倒數(shù).如2的差倒數(shù)是數(shù)學(xué)公式=-1,-1的差倒數(shù)是數(shù)學(xué)公式=數(shù)學(xué)公式,設(shè)a1=3,a2是a1的差倒數(shù),a3是a2的差倒數(shù),…那么a2008=________.

-
分析:理解差倒數(shù)的概念,要根據(jù)定義去做.通過(guò)計(jì)算,尋找差倒數(shù)出現(xiàn)的規(guī)律,依據(jù)規(guī)律解答即可.
解答:根據(jù)差倒數(shù)定義可得:a2===,a3===4,a4===--
顯然每三個(gè)循環(huán)一次,又2008÷3=669余1,
故a2008和a1的值相等.
故答案為:-
點(diǎn)評(píng):本題考查了數(shù)字的變化類問(wèn)題,此類題型要嚴(yán)格根據(jù)定義做,這也是近幾年出現(xiàn)的新類型題之一,同時(shí)注意分析循環(huán)的規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-單項(xiàng)式乘以多項(xiàng)式(帶解析) 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-單項(xiàng)式乘以多項(xiàng)式(解析版) 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案