(2010•德州)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(3,0),B(2,-3),C(0,-3).
(1)求此函數(shù)的解析式及圖象的對稱軸;
(2)點(diǎn)P從B點(diǎn)出發(fā)以每秒0.1個(gè)單位的速度沿線段BC向C點(diǎn)運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)出發(fā)以相同的速度沿線段OA向A點(diǎn)運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形ABPQ為等腰梯形;
②設(shè)PQ與對稱軸的交點(diǎn)為M,過M點(diǎn)作x軸的平行線交AB于點(diǎn)N,設(shè)四邊形ANPQ的面積為S,求面積S關(guān)于時(shí)間t的函數(shù)解析式,并指出t的取值范圍;當(dāng)t為何值時(shí),S有最大值或最小值.

【答案】分析:(1)知道二次函數(shù)的解析式經(jīng)過三點(diǎn),把三點(diǎn)坐標(biāo)代入就能求得函數(shù)解析式,由解析式寫出對稱軸.
(2)①過點(diǎn)B,點(diǎn)P作BD⊥OA,PE⊥OA,垂足分別為D,E,要使四邊形ABPQ為等腰梯形,只需PQ=AB,算出時(shí)間t.
②設(shè)對稱軸與BC,x軸的交點(diǎn)分別為F,G,根據(jù)題意求出PF=QG,MFP≌△MGQ,由S=S四邊形ABPQ-S△BPN列出函數(shù)關(guān)系式,求出最小值.
解答:解:(1)∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)C(0,-3),
∴c=-3,
將點(diǎn)A(3,0),B(2,-3)代入y=ax2+bx+c

解得:a=1,b=-2.
∴y=x2-2x-3,
配方得:y=(x-1)2-4,
所以對稱軸直線為:x=1;

(2)①由題意可知:BP=OQ=0.1t,
∵點(diǎn)B,點(diǎn)C的縱坐標(biāo)相等,
∴BC∥OA,
過點(diǎn)B,點(diǎn)P作BD⊥OA,PE⊥OA,垂足分別為D,E,
要使四邊形ABPQ為等腰梯形,只需PQ=AB,
∵BD⊥OA,PE⊥OA,垂足分別為D,E,
∴△ABD和△QPE為直角三角形,
當(dāng)PQ=AB時(shí),又∵BD=PE,
∴Rt△ABD≌Rt△QPE(HL),
∴QE=AD=1.
∵ED=BP=0.1t,DO=BC=2,
∴EO=2-0.1t,
又∵QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t,
∴2-0.2t=1,
解得t=5.
即t=5秒時(shí),四邊形ABPQ為等腰梯形.
②設(shè)對稱軸與BC,x軸的交點(diǎn)分別為F,G.
∵對稱軸x=1是線段BC的垂直平分線,
∴BF=CF=OG=1.
又∵BP=OQ,
∴PF=QG.
又∵∠PMF=∠QMG,∠MFP=∠MGQ=90°,
∴△MFP≌△MGQ(AAS),
∴MF=MG,
∴點(diǎn)M為FG的中點(diǎn),
∴S=S四邊形ABPQ-S△BPN=S四邊形ABFG-S△BPN
由S四邊形ABFG==

∴S=
又∵BC=2,OA=3,
∴點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí)停止運(yùn)動(dòng),需要20秒.
∴0<t≤20.
∴當(dāng)t=20秒時(shí),面積S有最小值3.
點(diǎn)評:本題主要考查二次函數(shù)的應(yīng)用,會求二次函數(shù)的對稱軸等一系列問題,求最值問題一般可以轉(zhuǎn)化為函數(shù)的最值問題,此題比較繁瑣,做題需要耐心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•德州)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(3,0),B(2,-3),C(0,-3).
(1)求此函數(shù)的解析式及圖象的對稱軸;
(2)點(diǎn)P從B點(diǎn)出發(fā)以每秒0.1個(gè)單位的速度沿線段BC向C點(diǎn)運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)出發(fā)以相同的速度沿線段OA向A點(diǎn)運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形ABPQ為等腰梯形;
②設(shè)PQ與對稱軸的交點(diǎn)為M,過M點(diǎn)作x軸的平行線交AB于點(diǎn)N,設(shè)四邊形ANPQ的面積為S,求面積S關(guān)于時(shí)間t的函數(shù)解析式,并指出t的取值范圍;當(dāng)t為何值時(shí),S有最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•德州)●探究:
(1)在圖中,已知線段AB,CD,其中點(diǎn)分別為E,F(xiàn).
①若A(-1,0),B(3,0),則E點(diǎn)坐標(biāo)為______;
②若C(-2,2),D(-2,-1),則F點(diǎn)坐標(biāo)為______;
(2)在圖中,已知線段AB的端點(diǎn)坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點(diǎn)D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示),并給出求解過程.
●歸納:
無論線段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為A(a,b),B(c,d),AB中點(diǎn)為D(x,y)時(shí),x=______,y=______.(不必證明)
●運(yùn)用:
在圖中,一次函數(shù)y=x-2與反比例函數(shù)的圖象交點(diǎn)為A,B.
①求出交點(diǎn)A,B的坐標(biāo);
②若以A,O,B,P為頂點(diǎn)的四邊形是平行四邊形,請利用上面的結(jié)論求出頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圓》(02)(解析版) 題型:選擇題

(2010•德州)已知三角形的三邊長分別為:3,4,5,則它的邊與半徑為1的圓的公共點(diǎn)個(gè)數(shù)所有可能的情況是( )
A.0,1,2,3
B.0,1,2,4
C.0,1,2,3,4
D.0,1,2,4,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•德州)已知三角形的三邊長分別為:3,4,5,則它的邊與半徑為1的圓的公共點(diǎn)個(gè)數(shù)所有可能的情況是( )
A.0,1,2,3
B.0,1,2,4
C.0,1,2,3,4
D.0,1,2,4,5

查看答案和解析>>

同步練習(xí)冊答案