【題目】二次函數(shù)的部分圖象如圖所示,圖象過點(diǎn),對稱軸為直線,下列結(jié)論:;>0;(3)若點(diǎn)、點(diǎn)、點(diǎn)在該函數(shù)圖象上,則;若方程的兩根為,且,則其中正確的結(jié)論是______

【答案】1)(2)(4

【解析】

根據(jù)二次函數(shù)的性質(zhì)分別判斷:(1)根據(jù)對稱軸公式計(jì)算即可;(2)由圖象可知拋物線經(jīng)過(-1,0)和(5,0),列出方程組求出a、b即可判斷;(3)利用函數(shù)圖象即可判斷;(4)利用二次函數(shù)與二次不等式關(guān)系即可解決問題.

,

,故(1)正確;

∵拋物線與x軸的一個交點(diǎn)為,

又∵,

,即,

,

∵拋物線開口向下,

,故(2)正確,

∵拋物線的對稱軸為,,

,

,在對稱軸的左側(cè),

x的增大而增大,

,故(3)錯誤;

方程的兩根為、,

x軸的平行線,直線與拋物線的交點(diǎn)的橫坐標(biāo)為方程的兩根,

依據(jù)函數(shù)圖象可知:,故(4)正確,

故答案為:(1)(2)(4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、E在同一直線上,∠FEB=∠ACB90°,ACBC,EBEF,連AF,CE交于點(diǎn)HAF、CB交于點(diǎn)D,若tanCAD,則=( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,某小區(qū)計(jì)劃購買甲、乙兩種品牌的消毒劑,乙品牌消毒劑每瓶的價(jià)格比甲品牌消毒劑每瓶價(jià)格的3倍少50元,已知用300元購買甲品牌消毒劑的數(shù)量與用400元購買乙品牌消毒劑的數(shù)量相同.

(1)求甲、乙兩種品牌消毒劑每瓶的價(jià)格各是多少元?

(2)若該小區(qū)從超市一次性購買甲、乙兩種品牌的消毒劑共40瓶,且總費(fèi)用為1400元,求購買了多少瓶乙品牌消毒劑?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,對于已知一次函數(shù)y1=ax+b,y2=cx+d(其中a,b,cd為常數(shù),且ac0),定義一個新函數(shù)y=,稱yy1y2的算術(shù)中項(xiàng),yx的算術(shù)中項(xiàng)函數(shù).

1)如:一次函數(shù)y1=x4,y2=x+6,yx的算術(shù)中項(xiàng)函數(shù),即y=

①自變量x的取值范圍是   ,當(dāng)x=   時(shí),y有最大值;

②根據(jù)函數(shù)研究的途徑與方法,請?zhí)顚懴卤,并在圖1中描點(diǎn)、連線,畫出此函數(shù)的大致圖象;

x

8

9

10

12

13

14

16

17

18

y

0

1.2

1.6

   

2.04

2

   

1.2

0

③請寫出一條此函數(shù)可能有的性質(zhì)   ;

2)如圖2,已知一次函數(shù)y1=x+2,y2=2x+6的圖象交于點(diǎn)E,兩個函數(shù)分別與x軸交于點(diǎn)A,C,與y軸交于點(diǎn)B,D,yx的算術(shù)中項(xiàng)函數(shù),即y=

①判斷:點(diǎn)AC、E是否在此算術(shù)中項(xiàng)函數(shù)的圖象上;

②在平面直角坐標(biāo)系中是否存在一點(diǎn),到此算術(shù)中項(xiàng)函數(shù)圖象上所有點(diǎn)的距離相等,如果存在,請求出這個點(diǎn);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:的直徑,弦于點(diǎn),連接,點(diǎn)上一點(diǎn),連接并延長于點(diǎn),交于點(diǎn)

1)如圖1,連接.求證:

2)如圖2,連接,過點(diǎn)于點(diǎn),交延長線于點(diǎn)求證:

3)如圖3,在(2)的條件下,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知,在△ABC中,∠BCA90°,ACkBC,點(diǎn)D,E分別在邊BC,AC上,且AEkCD,作線段DFDE,且DEkDF,連接EFAB于點(diǎn)G

1)如圖1,當(dāng)k1時(shí),求證:CED=∠BDF②AGGB;

2)如圖2,當(dāng)k1時(shí),猜想的值,并說明理由;

3)當(dāng)k2,AE4BD時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)D,E的中點(diǎn),連接AEBC于點(diǎn)F,∠ACB =2EAB

1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;

2)若,,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下面的正方形網(wǎng)格中,每個小正方形的邊長為1個單位,△ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格交點(diǎn)處)

(1)作出△ABC的中心對稱圖形△A點(diǎn)為對稱中心;

(2)作出△ABC關(guān)于點(diǎn)P的位似△A'B'C',且位似比為1:2;

(3)在圖中畫出以AB、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OAB的半徑OA4,圓心角∠AOB90°,點(diǎn)C是弧AB上異于AB的一點(diǎn),過點(diǎn)CCDOA于點(diǎn)D,作CEOB于點(diǎn)E,連結(jié)DE,過點(diǎn)C作弧AB所在圓的切線CGOA的延長線于點(diǎn)G

1)求證:∠CGO=∠CDE;

2)若∠CGD60°,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案