【題目】有甲、乙兩個(gè)箱子,其中甲箱內(nèi)有顆球,分別標(biāo)記號(hào)碼,且號(hào)碼為不重復(fù)的整數(shù),乙箱內(nèi)沒(méi)有球.已知小育從甲箱內(nèi)拿出顆球放入乙箱后,乙箱內(nèi)球的號(hào)碼的中位數(shù)為.若此時(shí)甲箱內(nèi)有顆球的號(hào)碼小于,有顆球的號(hào)碼大于,若他們的中位數(shù)都為,求的值.
【答案】
【解析】
已知他們的中位數(shù)都為,可得甲、乙箱內(nèi)球的數(shù)量應(yīng)該都是偶數(shù),設(shè)在甲箱內(nèi)球的號(hào)碼小于的數(shù)量是顆,則大于的數(shù)量也是顆;設(shè)在乙箱內(nèi)球的號(hào)碼小于數(shù)量是顆,則大于數(shù)量也是顆,于是在全部顆球中,號(hào)碼小于數(shù)量是顆,大于數(shù)量也是顆,可知是的中位數(shù),由此求得x的值即可.
因?yàn)樗麄兊闹形粩?shù)都為,所以甲、乙箱內(nèi)球的數(shù)量應(yīng)該都是偶數(shù),
設(shè)在甲箱內(nèi)球的號(hào)碼小于的數(shù)量是顆,則大于的數(shù)量也是顆;
設(shè)在乙箱內(nèi)球的號(hào)碼小于數(shù)量是顆,則大于數(shù)量也是顆,
于是在全部顆球中,號(hào)碼小于數(shù)量是顆,大于數(shù)量也是顆,即的中位數(shù)是,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O
(1)求證:△AEC≌△BED;
(2)若∠1=38°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線過(guò),,三點(diǎn),點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是,動(dòng)點(diǎn)在拋物線上.
________,________,點(diǎn)的坐標(biāo)為_(kāi)_______;(直接填寫(xiě)結(jié)果)
是否存在點(diǎn),使得是以為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
過(guò)動(dòng)點(diǎn)作垂直軸于點(diǎn),交直線于點(diǎn),過(guò)點(diǎn)作軸的垂線.垂足為,連接,當(dāng)線段的長(zhǎng)度最短時(shí),求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】百匯超市服裝柜在銷(xiāo)售中發(fā)現(xiàn):“七彩”牌童裝平均每天可售出件,每件盈利元.為了迎接“元旦”,商場(chǎng)決定采取適降價(jià)措施,擴(kuò)大銷(xiāo)售量,增加盈利,減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)元,那么平均每天就可多售出件.
如果每件降價(jià)元,那么平均每天可售出幾件?
要想平均每天銷(xiāo)售這種童裝上盈利元,那么每件童裝應(yīng)降價(jià)多少元?
用配方法說(shuō)明:要想盈利最多,每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MON=20° ,點(diǎn)A B分別是射線OM、ON上的動(dòng)點(diǎn)(A、B不與點(diǎn)0重合),若ABOM,在射線ON上有一點(diǎn)C,設(shè)∠OAC=x°,下列x的值不能使△ABC為等腰三角形的是( )
A.20
B.45
C.50
D.125
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,過(guò)作一直線與相交于點(diǎn),過(guò)作垂直于點(diǎn),過(guò)作垂直于點(diǎn),在上截取,再過(guò)作垂直交于.若.則與四邊形的面積之和為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1, △ABC和△CDE均為等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且點(diǎn)A、D、E在同一直線上,連結(jié)BE.
(1)求證: AD=BE.
(2)如圖2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 試求AB的長(zhǎng).
(3)如圖3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接寫(xiě)出AE的值(用a, b 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過(guò)點(diǎn)F作DE∥BC交AB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖①,在直角三角形ABC中,∠BAC=90,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
(1)特例探究:如圖②,∠MAN=90,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B.C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明:△ABD≌△CAF;
(2)歸納證明:如圖③,點(diǎn)B,C在∠MAN的邊AM、AN上,點(diǎn)E,F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)拓展應(yīng)用:如圖④,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E.F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為18,求△ACF與△BDE的面積之和是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com