【題目】如圖,在ABC中,AB=ACABCACB的平分線BD,CE相交于O點,且BDAC于點DCEAB于點E.某同學分析圖形后得出以下結論:BCDCBE;BADBCD;BDACEA;BOECOD; ACEBCE;上述結論一定正確的是

A. ①②③ B. ②③④ C. ①③⑤ D. ①③④

【答案】D

【解析】根據(jù)等腰三角形的性質及角平分線定義可得有關角之間的相等關系.運用三角形全等的判定方法AASASA判定全等的三角形.

解:AB=AC∴∠ABC=ACB

BD平分ABCCE平分ACB,

∴∠ABD=CBD=ACE=BCE

∴①△BCD≌△CBE ASA);

③△BDA≌△CEA ASA);

④△BOE≌△COD AASASA).

故選D

此題考查等腰三角形的性質和全等三角形的判定,難度不大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿直線AD折疊,B與點E重合,連接BEADO.∠ABC=90°,AB=6,BC=8,AC=10,SACD=15.有下列結論:①SCDE=5;②CD=5;③OB=OE;④SABD:SACD=3:4,則以上結論正確的是(

A. ①②B. ②③C. ②③④D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC.

(1)如圖1,過點A作AF⊥AB,并截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線BC上一點,且CE=BD,直線AE、CD相交于點P,∠APD的度數(shù)是一個固定的值嗎?若是,請求出它的度數(shù);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對折矩形紙片ABCD,使ABDC重合,得到折痕MN,將紙片展平;再一次折疊,使點D落到MN上的點F處,折痕APMNE;延長PFABG.求證:

(1)AFG≌△AFP;

(2)APG為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,是一個長為 2m,寬為 2n 的長方形,沿圖中虛線用剪刀將其均分成四個完全相同的小長方形,然后按圖 2 的形狀拼圖.

(1) 2 中的圖形陰影部分的邊長為 ;(用含 m、n 的代數(shù)式表示)

(2)請你用兩種不同的方法分別求圖 2 中陰影部分的面積; 方法一: 方法二:

(3)觀察圖 2,請寫出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關系式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經第4次作圖后,點B4到ON的距離是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一點,AE=5,ED⊥AB于D.

(1)求證:△ACB∽△ADE;
(2)求AD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由一些完全相同的小正方體搭成的幾何體的主視圖和左視圖,組成這個幾何體的小正方體的個數(shù)最少是( )

A.5個
B.6個
C.7個
D.8個

查看答案和解析>>

同步練習冊答案