將拋物線向右平移2個(gè)單位,再向上平移2個(gè)單位所得拋物線的表達(dá)式是    

y=2(x-2)2+1

解析試題分析:
根據(jù)“上加下減,左加右減”的法則可知,將拋物線y=2x2-1向右平移2個(gè)單位,再向上平移2個(gè)單位所得拋物線的表達(dá)式是y=2(x-2)2-1+2,即y=2(x-2)2+1.
故答案為:y=2(x-2)2+1.
考點(diǎn):二次函數(shù)圖象與幾何變換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

在反比例函數(shù)中,當(dāng)x>0時(shí),y隨x的增大而增大,則二次函數(shù)y=m x2+m x的圖象大致是下圖中的

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

請(qǐng)寫(xiě)出一個(gè)開(kāi)口向下,并且與x軸只有一個(gè)公共點(diǎn)的拋物線的解析式,y=                

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,已知拋物線(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點(diǎn)O,A1,將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,C2與x 軸交于另一點(diǎn)A2.請(qǐng)繼續(xù)操作并探究:將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,與x 軸交于另一點(diǎn)A3;將C3繞點(diǎn)A2旋轉(zhuǎn)180°得C4,與x 軸交于另一點(diǎn)A4,這樣依次得到x軸上的點(diǎn)A1,A2,A3,…,An,…,及拋物線C1,C2,…,Cn,….則點(diǎn)A4的坐標(biāo)為         ;Cn的頂點(diǎn)坐標(biāo)為               (n為正整數(shù),用含n的代數(shù)式表示) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

將拋物線y=x2+1先向左平移2個(gè)單位,再向下平移3個(gè)單位,那么所得拋物線的函數(shù)關(guān)系式是                

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如果將拋物線向下平移3個(gè)單位,那么所得新拋物線的表達(dá)式是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

將拋物線y=2x2先沿x軸方向向左平移2個(gè)單位,再沿y軸方向向下平移3個(gè)單位,所得拋物線的解析式是 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,在下列五個(gè)結(jié)論中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
錯(cuò)誤的個(gè)數(shù)有【   】

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,二次函數(shù)(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱(chēng)軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<-1或x>2.其中正確的個(gè)數(shù)是

A.1         B.2         C.3           D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案