已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求點(diǎn)A、B、C、D的坐標(biāo),并在下面直角坐標(biāo)系中畫出該二次函數(shù)的大致圖象;
(2)說(shuō)出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.
(1)A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4)圖形見(jiàn)解析;
(2)拋物線y=x2-2x-3可由y=x2先向右平移1個(gè)單位,再向下平移4個(gè)單位而得到;
(3)四邊形OCDB的面積為.
【解析】
試題分析:(1)先把此二次函數(shù)化為y=(x+1)(x﹣3)的形式,即可求出A、B兩點(diǎn)的坐標(biāo),由二次函數(shù)的解析式可知c=﹣3,故可知C點(diǎn)坐標(biāo),由二次函數(shù)的頂點(diǎn)式即可求出其頂點(diǎn)坐標(biāo);
(2)根據(jù)四邊形OCDB的面積=S矩形OEFB﹣S△BDF﹣S△CED即可解答.
試題解析:(1)∵二次函數(shù)y=x2﹣2x﹣3可化為y=(x+1)(x﹣3),A在B的左側(cè),
∴A(﹣1,0),B(3,0),
∵c=﹣3,
∴C(0,﹣3),
∵x===1,y==﹣4,
∴D(1,﹣4),故此函數(shù)的大致圖象為:
(2)拋物線y=x2-2x-3可由y=x2先向右平移1個(gè)單位,再向下平移4個(gè)單位而得到;
(3)連接CD、BD,
則四邊形OCDB的面積=S矩形OEFB﹣S△BDF﹣S△CED
=OB•|OE|﹣DF•|BF|﹣DE•CE
=3×4﹣×2×4﹣×1×1
=12﹣4﹣
=.
.
考點(diǎn):二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分10分)已知二次函數(shù)y=x2+bx-3的圖像經(jīng)過(guò)點(diǎn)P(-2,5).
(1)求b的值,并寫出當(dāng)0<x≤3時(shí)y的取值范圍;
(2)設(shè)點(diǎn)P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在這個(gè)二次函數(shù)的圖像上.
①試比較y1和y2的大。
②當(dāng)m取不小于5的任意實(shí)數(shù)時(shí),請(qǐng)你探索:y1、y2、y3能否作為一個(gè)三角形
三邊的長(zhǎng),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年蒙城六中九年級(jí)(上)第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題
已知二次函數(shù)y=x2-2x-3.求:
(1)拋物線與x軸和y軸相交的交點(diǎn)坐標(biāo);
(2)畫出此拋物線圖象;
(3)利用圖象回答下列問(wèn)題:
①方程x2-2x-3=0的解是什么?
②x取什么值時(shí),函數(shù)值大于0?
③x取什么值時(shí),函數(shù)值小于0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011屆江蘇省太倉(cāng)市九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題
已知二次函數(shù)y=x2-4x+3的圖象是由y=x2+2x-1的圖象先向上平移一個(gè)單位,再向
A.左移3個(gè)單位 B.右移3個(gè)單位 C.左移6個(gè)單位 D.右移6個(gè)單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com