已知是成比例線段,即其中,則______
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,∠C=∠E=90°,AC=3,BC=4,AE=2,則AD=_________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形中,分別是邊上的點,并延長交的延長線于點

(1)求證:
(2)若正方形的邊長為4,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,DE∥BC,EF∥AB.證明:△ADE∽△EFC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

提出問題:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
                                         
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點E、F是AD的3等分點,點G、H是BC的3等分點,連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,

因為△EGH與△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因為△EFH與△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是2:3,
所以SDBE=SABD
因為△BDH與△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢                       
驗證你的猜想:

(2)問題解決:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為:                            (不必寫出求解過程)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果,那么=     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△三個頂點的坐標分別為,以原點為位似中心,將△縮小,位似比為,則線段的中點變換后對應點的坐標為_________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,已知點(﹣4,2),(﹣2,﹣2),以原點為位似中心,把△縮小,所得三角形與△的相似比為,則點的對應點′的坐標是
A.(﹣2,1)B.(﹣8,4)
C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知△如圖所示,則下列4個三角形中,與△相似的是(   )

查看答案和解析>>

同步練習冊答案